首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   12篇
  国内免费   8篇
测绘学   1篇
地球物理   10篇
地质学   117篇
海洋学   15篇
天文学   1篇
自然地理   4篇
  2024年   1篇
  2023年   5篇
  2022年   1篇
  2021年   3篇
  2020年   11篇
  2019年   5篇
  2018年   10篇
  2017年   6篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   10篇
  2012年   2篇
  2011年   6篇
  2010年   6篇
  2009年   8篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   7篇
  2003年   9篇
  2002年   6篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
排序方式: 共有148条查询结果,搜索用时 312 毫秒
91.
Using the concept of bleaching in optical dating, a new index of sediment sample bleaching percentage (BLP‐2) was developed and applied to evaluate sand grain transport from riverine to deep‐marine environments. As bleached grains in modern sediments have no optically stimulated luminescence (OSL)/infrared stimulated luminescence (IRSL) signal, bleached and unbleached feldspar grains are distinguished by IRSL intensity. The BLP‐2 distribution of present deposits around the Kumano area, on the Pacific coast of central Japan, suggests that sand grains in surface turbidites obtained from the bottom of the Kumano Trough are of flood/storm origin rather than seismogenic origin. The distribution of BLP‐2 tentatively suggests sand grain erosion–transport–depositional processes; for example, origin and transport agencies of shelf sand, and influence of coastal erosion on the beach deposit. Although the present BLP analysis is not yet supported by a rigorous statistical test, it is useful to distinguish recent deposition and remobilization of sand grains. Furthermore, if the depositional age and the luminescence age of sand grains are accurately estimated, sand grain transport processes of old (late Quaternary) sediments may be estimated by the methodology similar to that of the present study.  相似文献   
92.
Suspended sediment delivery and deposition in proglacial lakes is generally sensitive to a wide range of hydrometeorologic and geomorphic controls. High discharge conditions are of particular importance in many glaciolacustrine records, with individual floods potentially recorded as distinctive turbidites. We used an extensive network of surface sediment cores and hydroclimatic monitoring data to analyse recent flood turbidites and associated sediment transfer controls over instrumental periods at Eklutna Lake, western Chugach Mountains, Alaska. Close to a decade of fluvial data from primary catchment tributaries show a dominating influence of discharge on sediment delivery, with various interconnections with other related hydroclimatic controls. Multivariate fluvial models highlight and help quantify some complexities in sediment transfer, including intra-annual variations, meteorological controls, and the influence of subcatchment glacierization. Sediments deposited in Eklutna Lake during the last half century are discontinuously varved and contain multiple distinctive turbidites. Over a 30-year period of stratigraphic calibration, we correlate the four thickest flood turbidites (1989, 1995, 2006, and 2012) to specific regional storms. The studied turbidites correlate with late-summer and early-autumn rainstorms with a magnitude of relatively instantaneous sedimentation 3–15 times greater than annual background accumulation. Our network of sediment core data captured the broad extent and sediment variability among the study turbidites and background sediment yield. Within-lake spatial modelling of deposition quantifies variable rates of downlake thinning and sediment focusing effects, and highlights especially large differences between the thickest flood turbidites and background sedimentation. This we primarily relate to strongly contrasting dispersion processes controlled by inflow current strength and turbidity. Sediment delivery is of interest for this catchment because of reservoir and water supply operations. Furthermore, although smaller floods may not be consistently represented, the lake likely contains a valuable proxy record of regional flooding proximal to major population centers of south-central Alaska including Anchorage.  相似文献   
93.
Two ca 8000 year long sediment cores from the Gotland Deep, the central sub‐basin of the Baltic Sea, were studied by means of digital images, X‐radiographs and scanning electron microscopy–energy‐dispersive X‐ray mineralogical analysis to gain understanding of the physicochemical and biological influences on sedimentary‐fabric formation in modern and ancient seas with a high flux of organic carbon, and associated oxygen stress and depauperate ichnofauna. Four lithofacies were recognized: (i) sharply laminated mud; (ii) biodeformed mud; (iii) burrow‐mottled mud; and (iv) sedimentation‐event bed. The sharply laminated and burrow‐mottled facies dominate the cores as alternating long intervals, whereas the biodeformed and sedimentation‐event facies occur as thin interbeds within the sharply laminated intervals. The sharply laminated mud comprises alternating diatom‐rich and lithic laminae, with occasional Mn‐carbonate laminae. Lamination discontinuity horizons within the laminites, where the regular lamination is overlain sharply by gently inclined lamination, challenge the traditional view of mud accumulation by settling from suspension, but indicate localized accumulation by particle‐trapping microbial mats and, potentially, by the rapid lateral accretion of mud from bedload transport. The biodeformed interbeds record brief (few years to few decades) oxic–dysoxic conditions that punctuated the anoxic background conditions and permitted sediment‐surface grazing and feeding by a very immature benthic community restricted to the surface mixed tier. The likely biodeformers were meiofauna and nectobenthic pioneers passively imported with currents. The sedimentation‐event interbeds are distal mud turbidites deposited from turbidity currents probably triggered by severe storms on the adjacent coastal areas. The turbidite preservation was favoured by the anoxic background conditions. The long burrow‐mottled intervals are characterized by intensely bioturbated fabrics with discrete Planolites, rare Arenicolites/Polykladichnus and very rare Lockeia trace fossils, as well as bivalve biodeformational structures which represent shallowly penetrating endobenthic feeding and grazing strategies and permanent dwellings. These burrowed intervals represent longer periods (several years to few centuries) of oxic–dysoxic conditions that permitted maturation in the benthos by means of larval settling of opportunistic worm‐like macrofauna and bivalves, resulting in the development of a transition tier. These observations imply more dynamic and oxic depositional conditions in Gotland Deep than previously thought. Comparison to previous zoobenthic studies in the area allowed discussion of the benthic dynamics, and the identification of probable biodeforming and trace‐producing species. Implications for current biofacies and trace‐fossil models are discussed.  相似文献   
94.
In order to develop viable depositional models for wedgetop basins, the control exerted by active structural relief on turbidite depositional patterns should be well understood at different scales (from limb slope to interconnected synclinal troughs). This is particularly the case for systems with axial sediment supply, for which little data are available. This paper presents a detailed field study of two depocentres in the Upper Eocene – Lower Oligocene Annot Sandstone of the alpine foreland basin of SE France, which was fed axially from the Corsica–Sardinia Massif to the south. The depocentres are partially preserved in a series of outliers. The Annot outlier preserves turbidites deposited on the gently dipping limb of an asymmetrical syn-depositional syncline, while, to the north, the NE Grand Coyer outlier preserves highly confined turbidites deposited on a steep and complex synclinal limb. Structural, stratigraphic and sedimentological data demonstrate that these turbidite depocentres were controlled by active folding and faulting, including oblique structures. Structural controls were more complex on the steep eastern synclinal limbs than on shallowly dipping western limbs. Integration of palaeocurrent data allow feeder pathways and their evolving interconnections to be traced between successive downstream depocentres in space and time. A 3D depositional model for axially supplied active wedgetop depocentres is proposed and compared to transversely fed wedgetop systems, particularly in terms of facies distributions and variations in reservoir quality. Axially supplied systems are marked by a higher lateral confinement and, as a consequence, are more sensitive to relief created by oblique structures. As a result facies distributions are more strongly controlled by (active or inactive) substratum relief than by intrinsic flow properties, leading to a higher potential for stratigraphic traps.  相似文献   
95.
Evolving turbidite systems on a deforming basin floor, Tabernas, SE Spain   总被引:2,自引:0,他引:2  
The Tabernas‐Sorbas basin was a narrow, east‐west trending, marine trough of Late Miocene age. Sediment gravity flow deposits dominate the basin fill and provide a record of changing bathymetry in response to tectonically induced sea bed deformation. A reanalysis of the western end of the basin in the vicinity of Tabernas establishes an upward evolution involving: (1) sand‐starved marls that were incised by axial channels recording a period of bypass, during which sand deposition took place in a depocentre further to the east; (2) punctuated infilling of the incisions, locally by high‐sinuosity embedded channels. Channel filling is related to a gradient reduction, which presaged collapse of the axial slope as the depocentre began to migrate westwards into the Tabernas area; (3) draping of the earlier incision fills by laterally extensive sheet turbidites, which were initially contained in structurally controlled depressions. These ‘deeps’ opened up as active faults propagated through the former axial slope. Flow containment is inferred on account of the unusual structure of the sheet sandstone beds, complex palaeoflow relationships and thick mudstone caps; (4) fault‐controlled topography was subsequently healed, and further sheet turbidites showing evidence of longer range containment and progressive slope onlap were emplaced. These record mixed supply from both seismically trigged ‘axial’ failures and a reactivated, fault‐controlled slope building out from the northern margin of the basin. Flows traversing the trough floor were strongly reflected off slopes marking the southern limit of the basin. The studied succession is capped by (5) the Gordo megabed event, a large, probably seismically triggered, failure which blanketed the basin floor, demonstrating an enlarged but still contained basin now devoid of significant intrabasinal fault topography. Tectonics played a key role in driving the evolution of the turbidite systems in this basin. Deformation of the basin floor had an important impact on gradients, slope stability, bathymetry and the ability of flows to bypass along the trough axis. Westward migration of the depocentre into the Tabernas area led to a change from incision and bypass to conduit backfilling to flow containment, as fault‐induced subsidence generated a ‘sump’, which trapped flows moving along the basin axis.  相似文献   
96.
Guo-Can  Wang  Robert P.  Wintsch  John I.  Garver  Mary  Roden-Tice  She-Fa  Chen  Ke-Xin  Zhang  Qi-Xiang  Lin  Yun-Hai  Zhu  Shu-Yuan  Xiang  De-Wei  Li 《Island Arc》2009,18(3):444-466
Triassic turbidites dominate the Songpan–Ganzi–Bayan Har (SGBH) terrane of the northern Tibetan Plateau. U‐Pb dating on single detrital zircon grains from the Triassic Bayan Har Group turbidites yield peaks at 400–500 m.y., 900–1000 m.y., 1800–1900 m.y., and 2400–2500 m.y., These results are consistent with recently published U‐Pb zircon ages of pre‐Triassic bedrock in the East Kunlun, Altyn, Qaidam, Qilian and Alaxa areas to the north, suggesting that provenance of the Bayan Har Group may include these rocks. The similarities in the compositions of the lithic arkosic sandstones of the Bayan Har Group with the sandstones of the Lower‐Middle Triassic formations in the East Kunlun terrane to the north also suggests a common northern provenance for both. A well exposed angular unconformity between the Carboniferous–Middle Permian mélange sequences and the overlying Upper Permian or Triassic strata indicates that regional deformation occurred between the Middle and Late Permian. This deformation may have been the result of a soft collision between the Qiangtang terrane and the North China Plate and the closure of the Paleo‐Tethyan oceanic basin. The Bayan Har Group turbidites were then deposited in a re‐opened marine basin on a shelf environment. Fission‐track dating of detrital zircons from the Bayan Har Group sandstones revealed pre‐ and post‐depositional age components, suggesting that the temperatures did not reach the temperatures necessary to anneal retentive zircon fission tracks (250–300°C). A 282–292 m.y. peak age defined by low U concentration, retentive zircons likely reflects a northern granitic source. Euhedral zircons from two lithic arkoses with abundant volcanic fragments in the southern area yielded a ~237 m.y. zircon fission track (ZFT) peak age, likely recording the maximum age of deposition. A dominant post‐depositional 170–185 m.y. ZFT peak age suggests peak temperatures were reached in the Early Jurassic. Some samples appear to record a younger thermal event at ~140 m.y., a short lived event that apparently affected only the least retentive zircons.  相似文献   
97.
Ordovician quartz turbidites of the Lachlan Fold Belt in southeastern Australia accumulated in a marginal sea and overlapped an adjoining island arc (Molong volcanic province) developed adjacent to eastern Gondwana. The turbidite succession in the Shoalhaven River Gorge, in the southern highlands of New South Wales, has abundant outcrop and graptolite sites. The succession consists of, from the base up, a unit of mainly thick‐bedded turbidites (undifferentiated Adaminaby Group), a unit with conspicuous bedded chert (Numeralla Chert), a unit with common thin‐bedded turbidites (Bumballa Formation (new name)) and a unit of black shale (Warbisco Shale). Coarse to very coarse sandstone in the Bumballa Formation is rich in quartz and similar to sandstone in the undifferentiated Adaminaby Group. Detrital zircons from sandstone in the Bumballa Formation, and from sandstone at a similar stratigraphic level from the upper Adaminaby Group of the Genoa River area in eastern Victoria, include grains as young as 453–473 Ma, slightly older than the stratigraphic ages.The dominant detrital ages are in the interval 500–700 Ma (Pacific Gondwana component) with a lessor concentration of Grenville ages (1000–1300 Ma). This pattern resembles other Ordovician sandstones from the Lachlan Fold Belt and also occurs in Triassic sandstones and Quaternary sands from eastern Australia. The Upper Ordovician succession is predominantly fine grained, which reflects reduced clastic inputs from the source in the Middle Cambrian to earliest Ordovician Ross‐Delamerian Fold Belts that developed along the eastern active margin of Gondwana. Development of subduction zones in the Late Ordovician marginal sea are considered to be mainly responsible for the diversion of sediment and the resulting reduction in the supply of terrigenous sand to the island arc and eastern part of the marginal sea.  相似文献   
98.
99.
Detrital zircon from the Carboniferous Girrakool Beds in the central Tablelands Complex of the southern New England Orogen, Australia, is dominated by ca 350–320 Ma grains with a peak at ca 330 Ma; there are very few Proterozoic or Archean grains. A maximum deposition age for the Girrakool Beds of ca 309 Ma is identified. These data overlap the age of the Carboniferous Keepit arc, a continental volcanic arc along the western margin of the Tamworth Belt. Zircon trace-element and isotopic compositions support petrographic evidence of a volcanic arc provenance for sedimentary and metasedimentary rocks of the central Tablelands Complex. Zircon Hf isotope data for ca 350–320 Ma detrital grains become less radiogenic over the 30 million-year record. This pattern is observed with maturation of continental volcanic arcs but is opposite to the longer-term pattern documented in extensional accretionary orogens, such as the New England Orogen. Volcanic activity in the Keepit arc is inferred to decrease rapidly at ca 320 Ma, based on a major change in the detrital zircon age distribution. Although subduction continues, this decrease is inferred to coincide with the onset of trench retreat, slab rollback and the eastward migration of the magmatic arc that led to the Late Carboniferous to early Permian period of extension, S-type granite production and intrusion into the forearc basin, high-temperature–low-pressure metamorphism, and development of rift basins such as the Sydney–Gunnedah–Bowen system.  相似文献   
100.
Lower to upper Middle Ordovician quartz-rich turbidites form the bedrock of the Lachlan Orogen in the southern Tasmanides of eastern Australia and occupy a present-day deformed volume of ~2–3 million km3. We have used U–Pb and Hf-isotope analyses of detrital zircons in biostratigraphically constrained turbiditic sandstones from three separate terranes of the Lachlan Orogen to investigate possible source regions and to compare similarities and differences in zircon populations. Comparison with shallow-water Lower Ordovician sandstones deposited on the subsiding margin of the Gondwana craton suggests different source regions, with Grenvillian zircons in shelf sandstones derived from the Musgrave Province in central Australia, and Panafrican sources in shelf sandstones possibly locally derived. All Ordovician turbiditic sandstone samples in the Lachlan Orogen are dominated by ca 490–620 Ma (late Panafrican) and ca 950–1120 Ma (late Grenvillian) zircons that are sourced mainly from East Antarctica. Subtle differences between samples point to different sources. In particular, the age consistency of late Panafrican zircon data from the most inboard of our terranes (Castlemaine Group, Bendigo Terrane) suggests they may have emanated directly from late Grenvillian East Antarctic belts, such as in Dronning Maud Land and subglacial extensions that were reworked in the late Panafrican. Changes in zircon data in the more outboard Hermidale and Albury-Bega terranes are more consistent with derivation from the youngest of four sedimentary sequences of the Ross Orogen of Antarctica (Cambrian–Ordovician upper Byrd Group, Liv Group and correlatives referred to here as sequence 4) and/or from the same mixture of sources that supplied that sequence. These sources include uncommon ca 650 Ma rift volcanics, late Panafrican Ross arc volcanics, now largely eroded, and some <545 Ma Granite Harbour Intrusives, representing the roots of the Ross Orogen continental-margin arc. Unlike farther north, Granite Harbour Intrusives between the Queen Maud and Pensacola mountains of the southern Ross Orogen contain late Grenvillian zircon xenocrysts (derived from underlying relatively juvenile basement), as well as late Panafrican magmatic zircons, and are thus able to supply sequence 4 and the Lachlan Ordovician turbidites with both these populations. Other zircons and detrital muscovites in the Lachlan Ordovician turbidites were derived from relatively juvenile inland Antarctic sources external to the orogen (e.g. Dronning Maud Land, Sør Rondane and a possible extension of the Pinjarra Orogen) either directly or recycled through older sedimentary sequences 2 (Beardmore and Skelton groups) and 3 (e.g. Hannah Ridge Formation) in the Ross Orogen. Shallow-water, forearc basin sequence 4 sediments (or their sources) fed turbidity currents into outboard, deeper-water parts of the forearc basin and led to deposition of the Ordovician turbidites ~2500–3400 km to the north in backarc-basin settings of the Lachlan Orogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号