首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   19篇
  国内免费   14篇
测绘学   13篇
大气科学   1篇
地球物理   34篇
地质学   71篇
海洋学   11篇
天文学   13篇
综合类   4篇
自然地理   26篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   6篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   8篇
  2013年   13篇
  2012年   8篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   9篇
  2007年   9篇
  2006年   9篇
  2005年   10篇
  2004年   8篇
  2003年   9篇
  2002年   3篇
  2001年   8篇
  2000年   2篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1973年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
51.
Ore value-tonnage diagrams for resource assessment   总被引:4,自引:0,他引:4  
An ore value-tonnage diagram has been proposed for assessing mineral resources. Diagrams of W+Mo, and Pb+Zn deposits show a good linearity between ore value and logarithms of cumulative ore tonnage. Diagrams of the massive sulfide, orthomagmatic, placer, porphyry, replacement, and stratabound types are also linear. It is assumed, therefore, that deposits of each of these commodities and these types belong to a single population. In contrast, the ore value-tonnage relations of all the deposits analyzed here is approximated by the combination of two exponential functions. The same feature is seen for deposits of the Cu+W+Mo, Cu+Pb+Zn, and Au+Ag commodities, and of the vein and unconformity-related types. This suggests that deposits belonging to each of such categories are divided into the high and low value groups. We can expect, accordingly, to find high value deposits of such categories.  相似文献   
52.
This work presents a stochastic diagrammatic theory for the calculation of the effective hydraulic conductivity of heterogeneous media. The theory is based on the mean-flux series expansion of a log-normal hydraulic conductivity medium in terms of diagrammatic representations and leads to certain general results for the effective hydraulic conductivity of three-dimensional media. A selective summation technique is used to improve low-order perturbation analysis by evaluating an infinite set of diagrammatic terms with a specific topological structure that dominates the perturbation series. For stochastically isotropic media the selective summation yeilds the anticipated exponential expression for the effective hydraulic conductivity. This expression is extended to stochastically anisotropic media. It is also shown that in the case of non homogeneous media the uniform effective hydraulic conductivity is replaced by a non-local tensor kernel, for which general diagrammatic expressions are obtained. The non-local kernel leads to the standard exponential behavior for the effective hydraulic conductivity at the homogeneous limit.  相似文献   
53.
This work presents a stochastic diagrammatic theory for the calculation of the effective hydraulic conductivity of heterogeneous media. The theory is based on the mean-flux series expansion of a log-normal hydraulic conductivity medium in terms of diagrammatic representations and leads to certain general results for the effective hydraulic conductivity of three-dimensional media. A selective summation technique is used to improve low-order perturbation analysis by evaluating an infinite set of diagrammatic terms with a specific topological structure that dominates the perturbation series. For stochastically isotropic media the selective summation yeilds the anticipated exponential expression for the effective hydraulic conductivity. This expression is extended to stochastically anisotropic media. It is also shown that in the case of non homogeneous media the uniform effective hydraulic conductivity is replaced by a non-local tensor kernel, for which general diagrammatic expressions are obtained. The non-local kernel leads to the standard exponential behavior for the effective hydraulic conductivity at the homogeneous limit.  相似文献   
54.
This paper illustrates an approach for determining uniquely the dip angle of a faulted structure, approximated by two semi-infinite horizontal slabs, displaced vertically from each other, by making use of the maximum positive and the maximum negative gravity amplitudes. The method is simple and rapid, and it does not necessarily require computing facilities.Two field examples from Aberdeenshire, Scotland and from the Northern Eastern Desert of Egypt are presented in which the angles of dip of two geological contacts are estimated at 45 and 40 degrees, respectively, and verified from surface geology, gravity modeling, and seismic data.  相似文献   
55.
The so-called Nonlinear Static Procedure (NSP) based on pushover analysis has been developed in the last decade as a practical engineering tool to estimate the inelastic response quantities in the framework of performance-based seismic evaluation of structures. However NSP suffers from a major drawback in that it is restricted with a single-mode response and therefore the procedure can be reliably applied only to the two-dimensional response of low-rise, regular buildings. Recognizing the continuously intensifying use of the pushover-based NSP in the engineering practice, the present paper attempts to develop a new pushover analysis procedure to cater for the multi-mode response in a practical and theoretically consistent manner. The proposed Incremental Response Spectrum Analysis (IRSA) procedure is based on the approximate development of the so-called modal capacity diagrams, which are defined as the backbone curves of the modal hysteresis loops. Modal capacity diagrams are used for the estimation of instantaneous modal inelastic spectral displacements in a piecewise linear process called pushover-history analysis. It is illustrated through an example analysis that the proposed IRSA procedure can estimate with a reasonable accuracy the peak inelastic response quantities of interest, such as story drift ratios and plastic hinge rotations as well as the story shears and overturning moments. A practical version of the procedure is also developed which is based on the code-specified smooth response spectrum and the well-known equal displacement rule. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
56.
Landslide dams are a common phenomenon. They form when a landslide reaches the bottom of a river valley causing a blockage. The first effect of such a dam is the infilling of a lake that inundates the areas upstream, while the possibility of a sudden dam collapse, with a rapid release of the impounded waters, poses a higher flood risk to the downstream areas. The results of the main inventories carried out to date on landslide dams, have been examined to determine criteria for forecasting landslide dam evolution with particular emphasis on the assessment of dam stability. Not all landslides result in the blockage of a river channel. This only occurs with ones that can move a large amount of material with moderate or high‐velocities. In most cases, these landslides are triggered by rainfall events or high magnitude earthquakes. A relationship also exists between the volume of the displaced material and the landslide dam stability. Several authors have proposed that landslide dam behaviour can be forecast by defining various geomorphological indexes, that result from the combination of variables identifying both the dam and the dammed river channel. Further developments of this geomorphological approach are presented in this paper by the definition of a dimensionless blockage index. Starting with an analysis of 84 episodes selected worldwide, it proved to be a useful tool for making accurate predictions concerning the fate of a landslide dam. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
57.
The evolution of the mineral assemblages and P–T conditions during partial melting of upper‐amphibolite facies paragneisses in the Orue Unit, Epupa Complex, NW Namibia, is modelled with calculated P–T–X phase diagrams in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O system. The close concordance of predictions from the phase diagrams to petrographic observations and thermobarometric results documents that quantitative phase diagrams are suitable to explain the phase relationships in migmatitic upper‐amphibolite facies low‐ and medium‐pressure metapelites, which occur in many high‐grade metamorphic terranes worldwide. Different mineral assemblages in the migmatitic metapelites of the Orue Unit reflect regional discrepancies in the metamorphic grade: in a Northern Zone, early biotite–sillimanite–quartz assemblages were replaced via melt‐producing reactions by cordierite‐bearing assemblages. In a Southern Zone, they were replaced via melt‐producing reactions by garnet‐bearing assemblages while cordierite is restricted to rare metapelitic granofelses, which preserve Grt–Sil–Crd–Bt peak assemblages. Peak‐metamorphic conditions of 700–750 °C at 5.5–6.7 kbar in the Southern Zone and of ~750 °C at 4.5 kbar in the Northern Zone are estimated by integrating thermobarometric calculations with data from calculated mineral composition isopleths. Retrograde back‐reactions between restite and crystallizing melt are recorded by the replacement of garnet by biotite–sillimanite and/or biotite–muscovite intergrowths. Upper‐amphibolite facies metamorphism and partial melting (c. 1340–1320 Ma) in the rocks of the Southern Zone of the Orue Unit, which underwent probably near‐isobaric heating–cooling paths, are attributed to contact metamorphism induced by the coeval (c. 1385–1319 Ma) emplacement of the Kunene Intrusive Complex, a huge massif‐type anorthosite body. The lower‐pressure metapelites of the Northern Zone are interpreted to record contact metamorphism at an upper crustal level.  相似文献   
58.
In northern steep streams anchor ice is commonly observed during winter, and plays a key role when considering in‐stream conditions. The understanding, however, of the nature of anchor ice formation is less understood, in particular, under natural conditions. In the following, observations of anchor ice formation in three stream environments with different physical characteristics are presented. Results demonstrate that anchor ice not only form in riffle areas, but also in shallow and slow running stream sections. No linkage between spatial distribution of anchor ice and calculated dimensionless numbers (Froude and Reynolds number) was found. Furthermore, analyses on growth and density showed that anchor ice may be distinguished by two main types. (1) Type I: Lower density forming on top of substrata. (2) Type II: Higher density forming between the substrata filling interstitial spaces. Distribution of anchor ice Types I and II suggests a relation between intensity of turbulence expressed by the Reynolds number, growth pattern and density. As anchor ice has both physical and biological implications on in‐stream environments, findings from the present study may be of particular interest to cold region freshwater stream management. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
59.
This paper presents an analytical solution to tide‐induced head fluctuations in a two‐dimensional estuarine‐coastal aquifer system that consists of an unconfined aquifer and a heterogeneous confined aquifer extending under a tidal river with a semipermeable layer between them. This study considers the joint effects of tidal‐river leakage, inland leakage, dimensionless transmissivity between the tidal‐river and inland confined aquifer, and transmissivity anisotropic ratios. The analytical solution for this model is obtained via the separation of variables method. Three existing solutions related to head fluctuation in one‐ or two‐dimensional leaky confined aquifers are considered as special cases in the present solution. This study shows that there is a threshold of tidal‐river confined aquifer length. When the tidal‐river length is greater than the threshold length, the inland head fluctuations remain sensitive to the leakage effect but become insensitive to the tidal‐river width and dimensionless transmissivity. Considering leakage and transmissivity anisotropy, this study also demonstrates that at a location farther from the river–inland boundary, head fluctuations increase with increasing leakage and transmissivity anisotropy; the maximum head fluctuation occurs when leakage and transmissivity anisotropy are both at their maximum values. The combined action of the 3 effects of loading, tidal‐river aquifer leakage, and inland aquifer leakage differs significantly according to various aquifer parameters. The analytical solution in this paper can be applied to demonstrate the behaviours of the head fluctuations of an estuarine‐coastal aquifer system, and the head fluctuations can be clearly described when the tidal and hydrogeological parameters are derived from field measurement data or hypothetical cases.  相似文献   
60.
When the governing equations of a problem are known, the non‐dimensionalization of these equations (applied in their classical form) is a useful and widely used method that can be used to identify the dimensionless groups that rule the solution. However, neither this technique nor dimensional analysis necessarily provides the most precise solution in terms of the sought numbers. The use of discrimination, a qualitative rather than quantitative extension of the non‐dimensionalization method, has demonstrated notable advantages over the classical method because it invariably provides a more precise set of dimensionless groups. The basis for the correct application of discrimination depends on a deep understanding of the phenomena involved in the problem, particularly in complex (coupled) problems. In this paper, discriminated non‐dimensionalization is applied to investigate a mixed convection problem in porous media, the Yusa problem. The derived discriminate groups are compared with those already known in the literature and deduced by classical methods. A number of scenarios are numerically solved to check the reliability of the discriminated groups in contrast with classical groups. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号