首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   11篇
  国内免费   18篇
地球物理   3篇
地质学   121篇
综合类   2篇
自然地理   1篇
  2024年   1篇
  2023年   1篇
  2020年   4篇
  2019年   4篇
  2018年   1篇
  2017年   7篇
  2016年   1篇
  2015年   5篇
  2014年   6篇
  2013年   3篇
  2012年   7篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   7篇
  2007年   8篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1988年   5篇
  1986年   1篇
  1985年   2篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
41.
Th/U ratios in metamorphic zircon   总被引:2,自引:0,他引:2       下载免费PDF全文
The Th/U ratios of zircon crystals are routinely used to help understand their growth mechanism. Despite the wide application of Th/U ratios in understanding the geological significance of zircon U–Pb ages, the main controls on the Th/U ratio in metamorphic zircon are poorly understood. Here, phase equilibria modelling coupled with solubility expressions for accessory minerals are used to investigate the controls on the Th/U ratios of suprasolidus metamorphic zircon in an average amphibolite facies metapelite composition. We also present a new database of metamorphic Th/U ratios in zircon from Western Australia. Several factors affecting the Th/U ratio are investigated, including the bulk rock concentrations of Th and U, the amount of monazite in the system, and open v. closed system behaviour. Our modelling predicts that the main controls on the Th/U ratio of suprasolidus metamorphic zircon are the concentrations of Th and U in the system, and the breakdown and growth of monazite in equilibrium with zircon. Furthermore, the relative timing of zircon and monazite growth during cooling and melt crystallization has an important role in the Th/U ratio of zircon. Early grown zircon near the peak of metamorphism is expected to have elevated Th/U ratios whereas zircon that grew near the solidus is predicted to have relatively low Th/U ratios, which reflects the coeval growth of monazite during cooling and melt crystallization. Our modelling approach aims to provide an improved understanding of the main controls of Th/U in metamorphic zircon in migmatites and hence better apply this geochemical ratio as a tool to assist in interpretation of the genesis of metamorphic zircon.  相似文献   
42.
姚建  周君  张成江 《四川地质学报》2014,(2):179-181,186
米易海塔地区五马箐组地层,前人争议较多。争论焦点主要围绕其时代归属及成因问题。通过野外实际工作,发现五马箐组片岩、片麻岩内有大量长英质脉体。据其空间展布、岩石学及稀土元素特征,判定具混合岩特征。因此认为五马箐组地层岩石组合与河口群地层存在一些可比性,时代早于会理群,晚于康定群,属区域动热变质作用及混合岩化作用形成。  相似文献   
43.
吕洪波  徐兴永  易亮  李萍 《地质学报》2012,86(3):514-521
本文首次报道了在山东鲁山南坡山谷发现混合岩表面的颤痕。颤痕是冰川底部携带的岩石碎块在下伏基岩表面刮凿而形成的一系列弧形裂隙,颤痕的弧形突出方向与冰川运动方向一致,而裂隙也是向下游方向深入基岩内部,其中突出的中间部位裂隙最深,向两端逐渐变浅直至消失。作者探讨了颤痕的形成机理,认为:颤痕相当于主剪切面上的伴生构造——R剪切面,在剖面上看就是一系列雁列式排列的R面,它不仅是冰川在基岩上运动留下的重要证据,而且还能指示冰体的运动方向。除了颤痕之外,在鲁山山麓还分布着大量的冰碛地貌:巨漂砾、冰碛堤等,在鲁山山脊上还见有典型的壶穴、冲刷槽等冰川融水侵蚀标志。这些标志与颤痕一起构成了强大的证据群,揭示了中国东部曾经发育过第四纪冰川的历史。中国东部是否发育过第四纪冰川?地学界已经争论了80多年,而颤痕的发现为进一步肯定中国东部存在第四纪冰川活动提供了最直接的证据。  相似文献   
44.
《International Geology Review》2012,54(12):1490-1505
We studied a high-pressure amphibole-bearing migmatite cropping out along the northeastern coast of Sardinia, a few kilometres northeast of Olbia, in order to improve our knowledge about its evolution using pressure–temperature (P–T) pseudosections. Thermodynamic calculations with PERPLE_X were undertaken in the system Na2O–K2O–CaO–FeO–MnO–MgO–Al2O3–TiO2–SiO2–H2O using a haplogranitic melt model. Calculations were conducted for average compositions of the protolith and the tonalitic leucosome with different contents of H2O to construct various pseudosections in the P–T range 2–20 kbar and 550–900°C. We demonstrate that the molar ratios Na/K and Si/Al of the anatectic melt are of high geothermobarometric value. Particularly the melt field in the P–T pseudosection for the protolith, contoured by Si/Al isolines, shows a significant decrease in this ratio with rising pressure. This ratio is only weakly dependent on variable H2O contents of the amphibole-bearing migmatite as demonstrated by contoured T–H2O pseudosections. The application of the Na/K and Si/Al ratios in melt yielded P–T conditions close to 13 kbar and 700°C, assigned as the conditions of partial melting. Evaluation of contoured P–T pseudosections for the leucosome composition resulted in conditions of about 10.5 kbar and 700°C for the crystallization of amphibole in the leucosome melt, and 9 kbar and 680°C for complete crystallization of this melt.  相似文献   
45.
Petrographic analysis is a useful, but underused tool to aid in distinguishing between subsolidus and anatetic-related textures in migmatites. This study focuses on assessing the relative contributions of these two processes in the development of migmatitic orthogneiss textures in the Velay Massif, French Massif Central. The results of this study show that subsolidus processes are more important in the development of migmatitic textures in the orthogneiss than anatectic leucosome development. Four textural stages are identified from the mylonitic non-anatectic orthogneiss, annealed, migmatitic orthogneiss to diatexite. The monomineralic K-feldspar and plagioclase–muscovite banding was transformed with increasing temperature to polymineralic plagioclase–quartz–muscovite and K-feldspar–quartz–muscovite layers by the wetting of feldspar boundaries during heterogeneous nucleation of quartz from a fluid phase at high surface energy triple points. A further increase of temperature led to the growth of K-feldspar probably related to production of small amounts of melt in plagioclase rich aggregates, controlled by muscovite abundance. Solid state annealing processes in conjunction with incipient anatexis resulted in the formation of apparent granitic-like textures in plagioclase dominated aggregates. By contrast, in K-feldspar dominated aggregates exclusively subsolidus processes prevail, leading to the development of coarse grained leucosome. With the onset of biotite dehydration melting the plagioclase-dominated aggregates are destroyed by the melt whereas the K-feldspar aggregates may be preserved.  相似文献   
46.
This study uses field, microstructural and geochemical data to investigate the processes contributing to the petrological diversity that arises when granitic continental crust is reworked. The Kinawa migmatite formed when Archean TTG crust in the São Francisco Craton, Brazil was reworked by partial melting at ~730 °C and 5–6 kbar in a regional‐scale shear zone. As a result, a relatively uniform leucogranodiorite protolith produced compositionally and microstructurally diverse diatexites and leucosomes. All outcrops of migmatite display either a magmatic foliation, flow banding or transposed leucosomes and indicate strong, melt‐present shearing. There are three types of diatexite. Grey diatexites are interpreted to be residuum, although melt segregation was incomplete in some samples. Biotite stable, H2O‐fluxed melting is inferred via the reaction Pl + Kfs + Qz + H2O = melt and geochemical modelling indicates 0.35–0.40 partial melting. Schlieren diatexites are extremely heterogeneous; residuum‐rich domains alternate with leucocratic quartzofeldspathic domains. Homogeneous diatexites have the highest SiO2 and K2O contents and are coarse‐grained, leucocratic rocks. Homogeneous diatexites, quartzofeldspathic domains from the schlieren diatexites and the leucosomes contain both plagioclase‐dominated and K‐feldspar‐dominated feldspar framework microstructures and hence were melt‐derived rocks. Both types of feldspar frameworks show evidence of tectonic compaction. Modelling the crystallization of an initial anatectic melt shows plagioclase appears first; K‐feldspar appears after ~40% crystallization. In the active shear zone setting, shear‐enhanced compaction provided an essentially continuous driving force for segregation. Thus, Kinawa migmatites with plagioclase frameworks are interpreted to have formed by shear‐enhanced compaction early in the crystallization of anatectic melt, whereas those with K‐feldspar frameworks formed later from the expelled fractionated melt. Trace element abundances in some biotite and plagioclase from the fractionated melt‐derived rocks indicate that these entrained minerals were derived from the wall rocks. Results from the Kinawa migmatites indicate that the key factor in generating petrological diversity during crustal reworking is that shear‐enhanced compaction drove melt segregation throughout the period that melt was present in the rocks. Segregation of melt during melting produced residuum and anatectic melt and their mixtures, whereas segregation during crystallization resulted in crystal fractionation and generated diverse plagioclase‐rich rocks and fractionated melts.  相似文献   
47.
变泥质岩递进部分熔融作用的构造物理学效应   总被引:1,自引:0,他引:1  
在南内华达岩基中,晚中生代花岗岩的侵位导致表壳岩广泛的变质及部分熔融,形成混合岩杂岩体。对伊萨贝拉湖南羊圈混合岩杂岩体构造的野外观测和应变测量表明:①变泥质混合岩和鹅卵石砾岩记录了类似强度的应变;②变泥质岩发生了递进部分熔融,表现为离羊圈花岗闪长岩岩体的距离越远,部分熔融程度越低;③随部分熔融程度的变化,变泥质岩的应变承载构造也逐渐从混合岩带的弱相承载构造(IWL)往强相承载构造(LBF)过渡;④在同岩浆构造作用中,浅色体的流变学性质与鹅卵石砾岩中泥质组分相当,为应变的主要承载体。该结果表明:在高级变质岩区中,部分熔融程度是否足够高及熔体能否形成互相链接的网络,是高级变质岩的流变学强度发生突降、深部岩石发生侧向流动的前提。  相似文献   
48.
This Special Issue comprises a selection of the papers given at a two‐day discussion meeting held at the University of Melbourne, Australia in June 2009 to celebrate Roger Powell’s 60th birthday. At this milestone, it is fitting to review Roger’s career to date. He has published ~200 scientific papers on topics that range from low‐ to high‐grade metamorphism, from low‐ to ultrahigh‐pressure (UHP) metamorphism, and from thermodynamics to kinetics. Most of Roger’s papers are multi‐authored and address important questions in the petrogenesis of metamorphic rocks. Roger is widely known for his work with Tim Holland to develop the most complete internally consistent dataset of thermodynamic properties of end members of phases necessary to undertake calculations on the conditions of formation and modification of metamorphic rocks. Additionally, Roger and Tim have developed activity–composition models for many of these phases, building on their important methodological developments in formulating such models. Roger is also responsible for the ongoing development of thermocalc , a thermodynamic calculation software package that may be used to undertake a wide range of phase diagram calculations, including PT projections, PT, PX and TX, compatibility diagrams and μ–μ diagrams. Together, Roger and Tim have changed the way we carry out quantitative phase equilibria studies. However, Roger’s contributions to metamorphic petrology go well beyond the development of phase equilibria methods and mineral thermodynamics. He has contributed significantly to our understanding of a range of metamorphic processes, and with an extensive array of co‐authors has shown how phase equilibria can be used to understand the evolution of metamorphic rocks in general terms as well as in specific terranes. The papers in this Special Issue cover the range from the stabilization of the continents to understanding the formation of orogenic gold deposits, from the stability of sapphirine–quartz‐bearing assemblages to the crystallization of melt in migmatites, from the effects of ferric iron and sulphur on the stability of metamorphic mineral assemblages in general to the effects of ferric iron and H2O on the stability of eclogite in particular, and to the quantification of UHP metamorphism. It is our hope that in reading these contributions, you will be stimulated to seek a better understanding of metamorphic processes and to improve our quantification of the variables in metamorphism.  相似文献   
49.
The Chandman massif, a typical structure of the Mongolian Altai, consists of a migmatite–magmatite core rimmed by a lower grade metamorphic envelope of andalusite and cordierite‐bearing schists. The oldest structure in the migmatite–magmatite core is a subhorizontal migmatitic foliation S1 parallel to rare granitoid sills. This fabric is folded by upright folds F2 and transposed into a vertical migmatitic foliation S2 that is syn‐tectonic, with up to several tens of metres thick granitoid sills. Sillimanite–ilmenite–magnetite S1 inclusion trails in garnet constrain the depth of equilibration during the S1 fabric to 6–7 kbar at 710–780 °C. Reorientation of sillimanite into the S2 fabric indicates that the S1–S2 fabric transition occurred in the sillimanite stability field. The presence of cordierite, and garnet rim chemistry point to decompression to 3–4 kbar and 680–750 °C during development of the S2 steep fabric, and post‐tectonic andalusite indicates further decompression to 2–3 kbar and 600–650 °C. Widespread crystallization of post‐tectonic muscovite is explained by the release of H2O from crystallizing partial melt. In the metamorphic envelope the subhorizontal metamorphic schistosity S1 is heterogeneously affected by upright F2 folds and axial planar subvertical cleavage S2. In the north, the inclusion trails in garnet are parallel to the S1 foliation, and the garnet zoning indicates nearly isobaric heating from 2.5 to 3 kbar and 500–530 °C. Cordierite contains crenulated S1 inclusion trails and has pressure shadows related to the formation of the S2 fabric. The switch from the S1 to the S2 foliation occurred near 2.5–3 kbar and 530–570 °C; replacement of cordierite by fine‐grained muscovite and chlorite indicates further retrogression and cooling. In the south, andalusite containing crenulated inclusion trails of ilmenite and magnetite indicates heating during the D2 deformation at 3–4 kbar and 540–620 °C. Monazite from a migmatite analysed by LASS yielded elevated HREE concentrations. The grain with the best‐developed oscillatory zoning is 356 ± 1.0 [±7] Ma (207Pb‐corrected 238U/206Pb), considered to date the crystallization from melt in the cordierite stability ~680 °C and 3.5 kbar, whereas the patchy BSE‐dark domains give a date of 347 ± 4.2 [±7] Ma interpreted as recrystallization at subsolidus conditions. The earliest sub‐horizontal fabric is associated with the onset of magmatism and peak of P–T conditions in the deep crust, indicating important heat input associated with lower crustal horizontal flow. The paroxysmal metamorphic conditions are connected with collapse of the metamorphic structure, an extrusion of the hot lower crustal rocks associated with vertical magma transfer and a juxtaposition of the hot magmatite–migmatite core with supracrustal rocks. This study provides information about tectono‐thermal history and time‐scales of horizontal flow and vertical mass and heat transfer in the Altai orogen. It is shown that, similar to collisional orogens, doming of partially molten rocks assisted by syn‐orogenic magmatism can be responsible for the exhumation of orogenic lower crust in accretionary orogenic systems.  相似文献   
50.
Evidence of melting is presented from the Western Gneiss Region (WGR) in the core of the Caledonian orogen, Western Norway and the dynamic significance of melting for the evolution of orogens is evaluated. Multiphase inclusions in garnet that comprise plagioclase, potassic feldspar and biotite are interpreted to be formed from melt trapped during garnet growth in the eclogite facies. The multiphase inclusions are associated with rocks that preserve macroscopic evidence of melting, such as segregations in mafic rocks, leucosomes and pegmatites hosted in mafic rocks and in gneisses. Based on field studies, these lithologies are found in three structural positions: (i) as zoned segregations found in high‐P (ultra)mafic bodies; (ii) as leucosomes along amphibolite facies foliation and in a variety of discordant structures in gneiss; and (iii) as undeformed pegmatites cutting the main Caledonian structures. Segregations post‐date the eclogite facies foliation and pre‐date the amphibolite facies deformation, whereas leucosomes are contemporaneous with the amphibolite facies deformation, and undeformed pegmatites are post‐kinematic and were formed at the end of the deformation history. The geochemistry of the segregations, leucosomes and pegmatites in the WGR defines two trends, which correlate with the mafic or felsic nature of the host rocks. The first trend with Ca‐poor compositions represents leucosome and pegmatite hosted in felsic gneiss, whereas the second group with K‐poor compositions corresponds to segregation hosted in (ultra)mafic rocks. These trends suggest partial melting of two separate sources: the felsic gneisses and also the included mafic eclogites. The REE patterns of the samples allow distinction between melt compositions, fractionated liquids and cumulates. Melting began at high pressure and affected most lithologies in the WGR before or during their retrogression in the amphibolite facies. During this stage, the presence of melt may have acted as a weakening mechanism that enabled decoupling of the exhuming crust around the peak pressure conditions triggering exhumation of the upward‐buoyant crust. Partial melting of both felsic and mafic sources at temperatures below 800 °C implies the presence of an H2O‐rich fluid phase at great depth to facilitate H2O‐present partial melting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号