首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   15篇
  国内免费   17篇
大气科学   4篇
地球物理   55篇
地质学   40篇
海洋学   50篇
综合类   5篇
自然地理   6篇
  2024年   4篇
  2023年   1篇
  2022年   10篇
  2021年   3篇
  2020年   6篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   8篇
  2012年   12篇
  2011年   9篇
  2010年   5篇
  2009年   11篇
  2008年   6篇
  2007年   5篇
  2006年   10篇
  2005年   5篇
  2004年   6篇
  2003年   7篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
11.
细菌反硝化法是目前同时分析天然水中硝酸盐氮、氧同位素组成的最新方法。该方法包括反硝化菌的选取与培养,利用反硝化菌将硝酸根完全转化成N2O气体以及N2O气体的提取、纯化和同位素测定。该方法采用硝酸盐标准,对测试结果需进行试剂本底、同位素分馏、同位素交换校正。与传统方法相比,细菌反硝化法可同时分析低浓度微量水中硝酸盐的氮、氧同位素组成,且速度更快捷,结果更可靠。  相似文献   
12.
多环芳烃(PAHs)与纳米材料污染已对沉积物生态系统和人类生存环境构成严重威胁,其复合污染的毒性效应环境危害可能更大。为了深入探讨PAHs与纳米材料对近岸表层沉积物反硝化作用的复合毒性效应,本文选取位于胶州湾(JZB)的大沽河河口区(DRE)E站和湾内S站,分别以菲和纳米银代表PAHs和纳米材料,通过测定不同剂量单一及复合污染下沉积物反硝化潜势(PDA)的变化,结合浓度相加模型(CA)、独立作用模型(IA)和中效/联合指数等效图法(CI)三种复合毒性评价方法,评价菲和纳米银对沉积物反硝化潜势的复合毒性效应,并对评价方法进行了优选。结果表明,两种污染物浓度越高,对研究区域反硝化潜势的抑制作用越大。菲、纳米银单一及复合作用下对河口区沉积物反硝化潜势的EC50值分别为44.62、112.49和64.86 mg·kg-1,对湾内分别为61.79、147.05和96.18 mg·kg-1。菲单一作用对反硝化潜势的抑制效应强于纳米银,但复合污染的抑制效应更强。两种污染物对河口区的沉积物反硝化潜势抑制效应强于湾内,可能与河口区具有较高Eh和沉积物颗粒度及较低的pH、盐度和有机质含量有关。三种毒性效应评价方法的结果表明,菲和纳米银的复合污染对2个站位反硝化潜势的毒性效应均为协同作用,且对大沽河河口区的协同作用更强。此外,CI法对复合效应的预测结果比CA和IA法更为接近实际观测值,且CI不需要考虑污染物作用模式的限制,因此认为CI法更适用于评价混合污染对沉积物反硝化作用复合影响的效果。本研究结果表明,菲和纳米银会增强彼此对反硝化菌及反硝化功能的毒性效应,由此推断,PAHs和纳米材料在环境中同时存在时比其单独存在对沉积环境的危害更大。  相似文献   
13.
Water column concentrations and benthic fluxes of dissolved inorganic nitrogen (DIN) and oxygen (DO) were measured in the Gulf of St. Lawrence and the Upper and Lower St. Lawrence Estuary (USLE and LSLE, respectively) to assess the nitrogen (N) budget in the St. Lawrence (SL) system, as well as to elucidate the impact of bottom water hypoxia on fixed-N removal in the LSLE. A severe nitrate deficit, with respect to ambient phosphate concentrations (N*∼−10 μmol L−1), was observed within and in the vicinity of the hypoxic bottom water of the LSLE. Given that DO concentrations in the water column have remained above 50 μmol L−1, nitrate reduction in suboxic sediments, rather than in the water column, is most likely responsible for the removal of fixed N from the SL system. Net nitrate fluxes into the sediments, derived from pore water nitrate concentration gradients, ranged from 190 μmol m−2 d−1 in the hypoxic western LSLE to 100 μmol m−2 d−1 in the Gulf. The average total benthic nitrate reduction rate for the Laurentian Channel (LC) is on the order of 690 μmol m−2 d−1, with coupled nitrification-nitrate reduction accounting for more than 70%. Using average nitrate reduction rates derived from the observed water column nitrate deficit, the annual fixed-N elimination within the three main channels of the Gulf of St. Lawrence and LSLE was estimated at 411 × 106 t N, yielding an almost balanced N budget for the SL marine system.  相似文献   
14.
Denitrification in Qi'ao Island coastal zone, the Zhujiang Estuary in China   总被引:1,自引:0,他引:1  
Samples of sediments and the overlying water were collected in the Qi'ao Island coastal zone, the Zhujiang (Pearl River) Estuary (ZE). Denitrification rates, sediment oxygen demand (SOD) , and fluxes of inorganic nitrogen compounds were investigated with N2 flux method, using a self-designed continuous flow through and auto-sampling system. The results indicate that the denitrification rates varied between 222 and 908 μmol/(m2·h) with an average of 499 μmol/(m2·h). During incubation, the sediments absorbed dissolved oxygen in the overlying water with SOD ranging from 300 to 2 363 μmol/(m2·h). The denitrification rates were highly correlated with the SOD (r2 =0.77) regardless of the NO3- + NO2- concentrations in the overlying water, organ- ic carbon contents in sediments and water temperature, suggesting that the SOD was probably the main environ-mental factor controlling the denitrification in the Qi'ao Island coastal zone. There was a net flux of NO3- + NO2-into the sediments from the overlying water. The NH4+ flux from sediments into water as the result of mineraliza-tion was between 12. 3 and 210. 3 μmol/(m2·h) ,which seems limited by both organic carbon content in sedi-ment and dissolved oxygen concentration in the overlying water.  相似文献   
15.
珠江口淇澳岛海岸带反硝化作用研究   总被引:3,自引:0,他引:3  
采用N2通量法,在一套连续流动培养装置中测定珠江口淇澳岛海岸带的反硝化速率,探讨各种因素对淇澳岛海岸带反硝化速率的影响.结果表明,反硝化速率受NO3-的利用率影响,而不是NO3-的绝对浓度.大型红树植物对淇澳岛海岸带的反硝化速率影响最大,其次是硝酸盐利用率,而有机质含量的影响较小.由于大型红树植物的影响,样品Q0411-5的反硝化速率比同在岛内的Q0411-3高出1倍.样品Q0412-14的NO3-培养前后的浓度变化(△NO3-)是Q0412-9的4倍多,因为受硝酸盐利用率的影响,它的反硝化速率却是Q0412-9的2倍多.温度对反硝化速率的影响程度尚不能确定.  相似文献   
16.
Groundwater that bypasses the riparian zone by travelling along deep flow paths may deliver high concentrations of fertilizer‐derived NO3? to streams, or it may be impacted by the NO3? removal process of denitrification in streambed sediments. In a study of a small agricultural catchment on the Atlantic coastal plain of Virginia's eastern shore, we used seepage meters deployed in the streambed to measure specific discharge of groundwater and its solute concentrations for various locations and dates. We used values of Cl? concentration to discriminate between bypass water recharged distal to the stream and that contained high NO3? but low Cl? concentrations and riparian‐influenced water recharged proximal to the stream that contained low NO3? and high Cl? concentrations. The travel time required for bypass water to transit the 30‐cm‐thick, microbially active denitrifying zone in the streambed determined the extent of NO3? removal, and hydraulic conductivity determined travel time through the streambed sediments. At all travel times greater than 2 days, NO3? removal was virtually complete. Comparison of the timescales for reaction and transport through the streambed sediments in this system confirmed that the predominant control on nitrate flux was travel time rather than denitrification rate coefficients. We conclude that extensive denitrification can occur in groundwater that bypasses the riparian zone, but a residence time in biologically active streambed sediments sufficient to remove a large fraction of the NO3? is only achieved in relatively low‐conductivity porous media. Instead of viewing them as separate, the streambed and riparian zone should be considered an integrated NO3? removal unit. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
17.
Recent information on some consequences of the acute mid-water oxygen deficiency in the Arabian Sea, especially on carbon-nitrogen cycling, is reviewed. An evaluation of published estimates of water column denitrification rate suggests an overall rate in the vicinity of 30Tg Ny-1, but the extent of benthic contribution remains unknown. A decoupling of denitrification from primary production, unique to the Arabian Sea, is revealed by nitrite, electron transport system (ETS) activity and bacterial production data. Results of both enzymatic and microbiological investigations strongly point to a major role of organic carbon other than that sinking from surface layers in supporting denitrification. Although denitrification is associated with an intermediate nepheloid layer, it seems unlikely that the excess carbon comes with particles re-suspended along the continental margins and transported quasi-horizontally into the ocean interior; instead, the particle maximum may directly reflect a higher bacterial abundance. It is proposed that denitrification may be predominantly fuelled by the dissolved organic matter.  相似文献   
18.
Little information is available on denitrification potential of marsh soils in natural saline-alkaline wetlands. The denitrification potentials of an open wetland in the floodplain(Erbaifangzi wetland) and a closed wetland(Fulaowenpao wetland) in backwater areas in Jilin Province of Northeast China were monitored by an anaerobic incubation at 30℃ for 25 days. Our results showed that the relative denitrification index(RDI) increased gradually with incubation time, and showed a rapid increase in the first 5 days of incubation. The RDI values declined quickly from surface soils to subsurface soils and then kept a small change in deeper soils along soil profiles over the incubation time. Denitrification proceeded much faster in the top 20 cm soils of open wetland than in the closed wetland, whereas no significant differences in RDI values were observed in deeper soils between both wetlands. The RDIs were significantly negatively correlated with bulk density and sand content, while a significantly positive correlation with clay content, soil organic matter, total nitrogen and phosphorous. The maximum net NO–3-N loss through denitrification in 1 m depth were higher in the open wetland than the closed wetland with higher soil pH values. Future research should be focused on understanding the influencing mechanisms of soil alkalinity.  相似文献   
19.
20.
This study investigated the effects of two alternative substrates(wood mulch and zeolite) on the performance of three laboratory-scale hybrid wetland systems that had identical system components and configurations.Each system consisted of a vertical flow(VF) wetland column,followed by a horizontal flow(HF) column and a vertical flow column.The substrates employed were wood mulch,gravel and zeolite,and Phragmites australis were planted in each column.The systems received synthetic wastewater,with pollutant loadings in the range of 8.5-38.0 g/(m2·d) total nitrogen(TN) and 4.0-46.4 g/(m2·d) biological oxygen demand(BOD5).Wood mulch and zeolite substrates showed higher efficiencies in terms of removing nitrogenous compounds and biodegradable organics.The supply of organic carbon from the organic mulch substrates enhanced denitrification,while adsorption of influent ammoniacal nitrogen(NH4-N) in zeolite played a major role in the removal of nitrogenous species in the wetland columns.Overall,the average percentage removals of TN and BOD5 reached >66% and >96% respectively,indicating stable performances by the hybrid wetland systems under the experimental loading ranges.Mathematical models were developed,based on the combination of Monod kinetics and continuously-stirred tank reactor(CSTR) flow patterns to describe the degradation of nitrogenous compounds.Predictions by the models closely matched the experimental data,indicating the validity and potential application of Monod kinetics in the modelling and design of treatment wetlands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号