全文获取类型
收费全文 | 1692篇 |
免费 | 123篇 |
国内免费 | 106篇 |
专业分类
测绘学 | 89篇 |
大气科学 | 59篇 |
地球物理 | 359篇 |
地质学 | 316篇 |
海洋学 | 177篇 |
天文学 | 2篇 |
综合类 | 110篇 |
自然地理 | 809篇 |
出版年
2024年 | 9篇 |
2023年 | 34篇 |
2022年 | 60篇 |
2021年 | 79篇 |
2020年 | 66篇 |
2019年 | 84篇 |
2018年 | 65篇 |
2017年 | 63篇 |
2016年 | 70篇 |
2015年 | 75篇 |
2014年 | 77篇 |
2013年 | 72篇 |
2012年 | 115篇 |
2011年 | 128篇 |
2010年 | 82篇 |
2009年 | 104篇 |
2008年 | 123篇 |
2007年 | 99篇 |
2006年 | 113篇 |
2005年 | 77篇 |
2004年 | 88篇 |
2003年 | 66篇 |
2002年 | 41篇 |
2001年 | 32篇 |
2000年 | 20篇 |
1999年 | 14篇 |
1998年 | 16篇 |
1997年 | 13篇 |
1996年 | 14篇 |
1995年 | 4篇 |
1994年 | 7篇 |
1992年 | 4篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1986年 | 1篇 |
1985年 | 2篇 |
排序方式: 共有1921条查询结果,搜索用时 15 毫秒
141.
山西湿地资源及可持续利用研究 总被引:16,自引:0,他引:16
山西湿地主要地各河流流域、湖泊和水库及周围地区,主要由河口(内陆)湿地、充湿地1湖泊湿地、水库湿地和沼泽及草甸湿地等组成总面积经久2146km^2。山西湿地有着丰富的自然资源,包括:(1)生物资源有植物1209种,其中野大豆为国家3级保护植物;资源植物7类,其中饲草植物蕴藏量最大;植被资源有70个群系,以 一植物群落占绝对优势;动物455种,其中国家1.2缘保护动物17种,鱼类资源70种。(2)土 相似文献
142.
Junhong Bai Qingqing Zhao Junjing Wang Qiongqiong Lu Xiaofei Ye Zhaoqin Gao 《中国地理科学(英文版)》2014,24(3):279-286
Little information is available on denitrification potential of marsh soils in natural saline-alkaline wetlands. The denitrification potentials of an open wetland in the floodplain(Erbaifangzi wetland) and a closed wetland(Fulaowenpao wetland) in backwater areas in Jilin Province of Northeast China were monitored by an anaerobic incubation at 30℃ for 25 days. Our results showed that the relative denitrification index(RDI) increased gradually with incubation time, and showed a rapid increase in the first 5 days of incubation. The RDI values declined quickly from surface soils to subsurface soils and then kept a small change in deeper soils along soil profiles over the incubation time. Denitrification proceeded much faster in the top 20 cm soils of open wetland than in the closed wetland, whereas no significant differences in RDI values were observed in deeper soils between both wetlands. The RDIs were significantly negatively correlated with bulk density and sand content, while a significantly positive correlation with clay content, soil organic matter, total nitrogen and phosphorous. The maximum net NO–3-N loss through denitrification in 1 m depth were higher in the open wetland than the closed wetland with higher soil pH values. Future research should be focused on understanding the influencing mechanisms of soil alkalinity. 相似文献
143.
田莉 《资源与生态学报(英文版)》2019,(3):296-306
近几十年来,蒙古高原和青藏高原的增温速度高于全球变暖的平均水平,导致生态系统的结构和功能发生了显著变化。叶面积指数(LAI)和蒸散发(ET)在塑造陆地表面过程和气候方面发挥着重要作用。在文中,我们重点关注LAI和ET的时空变化及其相互关系。基于2000-2014年的MODIS产品,我们发现蒙古高原的LAI和ET之间存在普遍的正相关关系,而青藏高原则没有协同作用。总体而言,青藏高原LAI的显著增加(减少)区域占总面积的49.38%(50.62%),蒙古高原则为94.92%(5.09%);青藏高原ET增加区域面积占总面积的21.70%(124.10×10~3 km^2),蒙古高原为88.01%(341.60×10~3 km^2)。更重要的是,随着时间的推移,这种关系在整个空间中发生了很大的变化,并且在景观的某些部分发现了不匹配。需要通过观测和/或实验研究来探讨这些关系,包括植被特征及其干扰的影响。 相似文献
144.
Runoff change and trend of the Naoli River Basin were studied through the time series analysis using the data from the hydrological and meteorological stations. Time series of hydrological data were from 1957 to 2009 for Bao′an station, from 1955 to 2009 for Baoqing station, from 1956 to 2009 for Caizuizi station and from 1978 to 2009 for Hongqiling station. The influences of climate change and human activities on runoff change were investigated, and the causes of hydrological regime change were revealed. The seasonal runoff distribution of the Naoli River was extremely uneven, and the annual change was great. Overall, the annual runoff showed a significant decreasing trend. The annual runoff of Bao′an, Baoqing, and Caizuizi stations in 2009 decreased by 64.1%, 76.3%, and 84.3%, respectively, compared with their beginning data recorded. The wet and dry years of the Naoli River have changed in the study period. The frequency of wet year occurrence decreased and lasted longer, whereas that of dry year occurrence increased. The frequency of dry year occurrence increased from 25.0%-27.8% to 83.9%-87.5%. The years before the 1970s were mostly wet, whereas those after the 1970s were mostly dry. Precipitation reduction and land use changes contributed to the decrease in annual runoff. Rising temperature and water project construction have also contributed important effects on the runoff change of the Naoli River. 相似文献
145.
基于实测高光谱数据的鄱阳湖湿地植被光谱差异波段提取 总被引:1,自引:0,他引:1
高光谱遥感技术的出现为有效解决湿地植被种类的精细识别和分类提供了可能.通过实地测取鄱阳湖湿地5种植被的高光谱数据,在对数据预处理的基础上,提出一种基于数据误差范围和植被光谱均值差的植被光谱差异波段提取方法.将该方法应用于包络线变换前后的光谱曲线提取植被的光谱差异波段,最后利用马氏距离法检验植被识别效果.结果表明:本文中的方法有效提取了植被光谱差异波段,其中变换前光谱差异波段分别为663~688 nm,变换后为581~636、660~695和1225~1236 nm.在光谱差异波段范围内,同种植被的马氏距离值小于异种植被的马氏距离值,可有效对植被进行识别.研究结果为湿地植被分类识别奠定了理论基础,同时为湖泊湿地植被以及湖泊生态环境的保护决策提供科学依据. 相似文献
146.
147.
148.
A reaction set of possible mineral weathering reactions is proposed to explain observed cation and silica export for the Emerald Lake watershed, a small Sierra Nevada, California catchment. The reaction set was calculated through a stoichiometric mole‐balance method, using a multiyear record of stream flow and snowpack chemical analyses and site‐specific mineral compositions. Reaction‐set calculations were intended to explore how the processes controlling stream cation and silica export depend on differing bedrock mineralogy across the catchment as snowmelt and runoff patterns change over the year. Different regions within the watershed can be differentiated by lake inflow subdrainages, each exhibiting different stream‐flow chemistry and calculated weathering stoichiometry, indicating that different silica and cation generation processes are dominant in wet steep portions of the catchment. Short‐term differences in stream concentrations were assumed to reflect ion exchange equilibria and rapid biological processes, whereas long‐term persistent stream concentration differences in different areas of the catchment were assumed to reflect spatial variability in mineral weathering stoichiometry. Mineralogical analyses of rock samples from the watershed provided site‐specific chemical compositions of major mineral species for reaction calculations. Reaction sets were evaluated by linear regression of calculated versus observed differences between snowmelt and stream‐flow chemistry and by a combined measure. Initially, single weathering reactions were balanced and evaluated to determine the reactions that best explained observed stream chemical export. Next, reactions were combined, using mineral compositions from different rock types to estimate the dependence of ion fluxes on lithology. The seasonal variability of major solute calculated fluxes is low, approximately one order of magnitude, relative to the observed three orders of magnitude variability in basin discharge. Reaction sets using basin‐averaged lithology and Aplite lithologies gave superior explanations of stream chemical composition. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
149.
对古浪县第二次全国湿地资源调查的技术、结果进行了系统分析,探索了研究区内湿地资源调查更新的方法,通过"天空地"协同和"互联网+"的调查更新技术全面更新研究区内湿地资源调查数据库,以全面掌握湿地资源状况。研究结果:1)古浪县第二次湿地资源调查范围内的非湿地类型面积达4 615.35 hm2,占全县第二次湿地调查总面积的59.31%。2)变更后县域内湿地资源总面积4 131.54 hm2,以河流水面、内陆滩涂、水库水面、沟渠为主要用地类型,较第二次调查湿地面积净减少3 650.25 hm2。3)"天空地"协同遥感监测技术为湿地资源变更监测提供高精度多源数据,保证了调查、监测的精度和准确性。 相似文献
150.
Giovanny M. Mosquera Patricio Crespo Lutz Breuer Jan Feyen David Windhorst 《水文研究》2020,34(9):2032-2047
Andosol soils formed in volcanic ash provide key hydrological services in montane environments. To unravel the subsurface water transport and tracer mixing in these soils we conducted a detailed characterization of soil properties and analyzed a 3-year data set of sub-hourly hydrometric and weekly stable isotope data collected at three locations along a steep hillslope. A weakly developed (52–61 cm depth), highly organic andic (Ah) horizon overlaying a mineral (C) horizon was identified, both showing relatively similar properties and subsurface flow dynamics along the hillslope. Soil moisture observations in the Ah horizon showed a fast responding (few hours) “rooted” layer to a depth of 15 cm, overlying a “perched” layer that remained near saturated year-round. The formation of the latter results from the high organic matter (33–42%) and clay (29–31%) content of the Ah horizon and an abrupt hydraulic conductivity reduction in this layer with respect to the rooted layer above. Isotopic signatures revealed that water resides within this soil horizon for short periods, both at the rooted (2 weeks) and perched (4 weeks) layer. A fast soil moisture reaction during rainfall events was also observed in the C horizon, with response times similar to those in the rooted layer. These results indicate that despite the perched layer, which helps sustain the water storage of the soil, a fast vertical mobilization of water through the entire soil profile occurs during rainfall events. The latter being the result of the fast transmissivity of hydraulic potentials through the porous matrix of the Andosols, as evidenced by the exponential shape of the water retention curves of the subsequent horizons. These findings demonstrate that the hydrological behavior of volcanic ash soils resembles that of a “layered sponge,” in which vertical flow paths dominate. 相似文献