首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3667篇
  免费   1022篇
  国内免费   1499篇
测绘学   30篇
大气科学   93篇
地球物理   725篇
地质学   4655篇
海洋学   329篇
天文学   49篇
综合类   162篇
自然地理   145篇
  2024年   26篇
  2023年   73篇
  2022年   127篇
  2021年   171篇
  2020年   191篇
  2019年   206篇
  2018年   197篇
  2017年   208篇
  2016年   198篇
  2015年   253篇
  2014年   253篇
  2013年   274篇
  2012年   291篇
  2011年   253篇
  2010年   243篇
  2009年   268篇
  2008年   228篇
  2007年   295篇
  2006年   247篇
  2005年   191篇
  2004年   245篇
  2003年   197篇
  2002年   182篇
  2001年   218篇
  2000年   209篇
  1999年   153篇
  1998年   157篇
  1997年   113篇
  1996年   108篇
  1995年   88篇
  1994年   79篇
  1993年   59篇
  1992年   52篇
  1991年   38篇
  1990年   16篇
  1989年   23篇
  1988年   13篇
  1987年   13篇
  1986年   12篇
  1985年   5篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有6188条查询结果,搜索用时 15 毫秒
41.
Hydrocyclones are widely used in the mining and chemical industries. An attempt has been made in this study, to develop a CFD (computational fluid dynamics) model, which is capable of predicting the flow patterns inside the hydrocyclone, including accurate prediction of flow split as well as the size of the air-core. The flow velocities and air-core diameters are predicted by DRSM (differential Reynolds stress model) and LES (large eddy simulations) models were compared to experimental results. The predicted water splits and air-core diameter with LES and RSM turbulence models along with VOF (volume of fluid) model for the air phase, through the outlets for various inlet pressures were also analyzed. The LES turbulence model led to an improved turbulence field prediction and thereby to more accurate prediction of pressure and velocity fields. This improvement was distinctive for the axial profile of pressure, indicating that air-core development is principally a transport effect rather than a pressure effect.  相似文献   
42.
This paper reviews the data concerning the fracture network and the hydraulic characteristics of faults in an active zone of the Gulf of Corinth. Pressure gap measured through fault planes shows that in this area the active normal faults (Aigion, Helike) act, at least temporarily and locally, as transversal seal. The analysis of the carbonate cements in the fractures on both the hangingwall and the footwall of the faults also suggests that they have acted as local seals during the whole fault zone evolution. However, the pressure and the characteristics of the water samples measured in the wells indicate that meteoric water circulates from the highest part of the relief to the coast, which means it goes through the fault zones. Field quantitative analysis and core studies from the AIG-10 well have been performed to define both regional and fault-related fracture networks. Then laboratory thin section observations have been done to recognize the different fault rocks characterizing the fault zone components. These two kinds of approach give information on the permeability characteristics of the fault zone. To synthesize the data, a schematic conceptual 3D fluid flow modeling has been performed taking into account fault zone permeability architecture, sedimentation, fluid flow, fault vertical offset and meteoric water influx, as well as compaction water flow. This modeling allows us to fit all the data with a model where the fault segments act as a seal whereas the relays between these segments allow for the regional flow from the Peloponnese topographic highs to the coast.  相似文献   
43.
Molecular and isotopic compositions of crude oils in the Beaufort–Mackenzie Basin confirm three genetic end-member oil groups and suggest extensive cross-formational hydrocarbon fluid flows in the Tertiary deltaic system. Inter- and intra-fractional variations in the geochemistry of the Tertiary-reservoired oils indicate that the oil source/maturity signatures were substantially masked by biomarkers that were picked up along migration pathways. Thus, many of the previously recognized “immature non-marine oils” are in fact thermally mature, probably derived from unpenetrated deeper marine source rocks. Although the effective source rock volumes have not been evaluated and their exact stratigraphic levels remain unknown, the relative timing of oil generation versus trap formation, rather than poor source quality, may be the cause of under-filled traps in the offshore area.  相似文献   
44.
For the sake of cost and potential environmental risk, it is necessary to minimize the amount of chelates used in chemically-enhanced phytoextraction. In the present study, a biodegradable chelating agent, EDDS was added in a hot solution at 90℃ to the soil in which garland chrysanthemum (Chrysanthemum coronarium L.) and beans (Phaseolus vulgaris L., white bean) were growing. The application of hot chelate solutions was much more efficient than the application of normal chelate solutions (25℃) in improving the uptake of heavy metals by plants. When 1 mmol kg1 of EDDS as a hot solution was applied to soil, the concentrations ofCu, Zn and Cd and the total phytoextraction by the shoots of the two plant species exceeded or approximated those in the shoots of plants treated with 5 mmol kg^-1 of normal EDTA solution. The concentrations of metals in the shoots of beans were significantly correlated with the relative electrolyte leakage rate of root cells, indicating that the root damage resulting from the hot solution might play an important role in the process of chelate-enhanced metal uptake. The soil leaching study demonstrated that decreasing the dosage of chelate resulted in decreased concentrations of soluble metals in soils. On the 28th day following the application of chelate, the concentrations of soluble metals in the EDDS treated soil were not significantly different from the concentrations in the control soil to which chelates had not been applied.  相似文献   
45.
Ice and snow have often helped physicists understand the world. On the contrary it has taken them a very long time to understand the flow of the glaciers. Naturalists only began to take an interest in glaciers at the beginning of the 19th century during the last phase of glacier advances. When the glacier flow from the upslope direction became obvious, it was then necessary to understand how it flowed. It was only in 1840, the year of the Antarctica ice sheet discovery by Dumont d'Urville, that two books laid the basis for the future field of glaciology: one by Agassiz on the ice age and glaciers, the other one by canon Rendu on glacier theory. During the 19th century, ice flow theories, adopted by most of the leading scientists, were based on melting/refreezing processes. Even though the word ‘fluid’ was first used in 1773 to describe ice, more the 130 years would have to go by before the laws of fluid mechanics were applied to ice. Even now, the parameter of Glen's law, which is used by glaciologists to model ice deformation, can take a very wide range of values, so that no unique ice flow law has yet been defined. To cite this article: F. Rémy, L. Testut, C. R. Geoscience 338 (2006).  相似文献   
46.
The Walter‐Outalpa shear zone in the southern Curnamona Province of NE South Australia is an example of a shear zone that has undergone intensely focused fluid flow and alteration at mid‐crustal depths. Results from this study have demonstrated that the intense deformation and ductile shear zone reactivation, at amphibolite facies conditions of 534 ± 20 °C and 500 ± 82 MPa, that overprint the Proterozoic Willyama Supergroup occurred during the Delamerian Orogeny (c. 500 Ma) (EPMA monazite ages of 501 ± 16 and 491 ± 19 Ma). This is in contrast to the general belief that the majority of basement deformation and alteration in the southern Curnamona Province occurred during the waning stages of the Olarian Orogeny (c. 1610–1580 Ma). These shear zones contain hydrous mineral assemblages that cut wall rocks that have experienced amphibolite facies metamorphism during the Olarian Orogeny. The shear zone rock volumes have much lower δ18O values (as low as 1‰) than their unsheared counterparts (7–9‰), and calculated fluid δ18O values (5–8‰) consistent with a surface‐derived fluid source. Hydrous minerals show a decrease in δD(H2O) from ?14 to ?22‰, for minerals outside the shear zones, to ?28 to ?40‰, for minerals within the shear zones consistent with a contribution from a meteoric source. It is unclear how near‐surface fluids initially under hydrostatic pressure penetrate into the middle crust where fluid pressures approach lithostatic, and where fluid flow is expected to be dominantly upward because of pressure gradients. We propose a mechanism whereby faulting during basin formation associated with the Adelaidean Rift Complex (c. 700 Ma) created broad hydrous zones containing mineral assemblages in equilibrium with surface waters. These panels of fault rock were subsequently buried to depths where the onset of metamorphism begins to dehydrate the fault rock volumes evolving a low δ18O fluid that is channelled through shear zones related to Delamerian Orogenic activity.  相似文献   
47.
Abstract. Denggezhuang gold deposit is an epithermal gold‐quartz vein deposit in northern Muru gold belt, eastern Shandong, China. The deposit occurs in the NNE‐striking faults within the Mesozoic granite. The deposit consists of four major veins with a general NNE‐strike. Based on crosscutting relationships and mineral parageneses, the veins appear to have been formed during the same mineralization epochs, and are further divided into three stages: (1) massive barren quartz veins; (2) quartz‐sulfides veins; (3) late, pure quartz or calcite veinlets. Most gold mineralization is associated with the second stage. The early stage is characterized by quartz, and small amounts of ore minerals (pyrite), the second stage is characterized by large amounts of ore minerals. Fluid inclusions in vein quartz contain C‐H‐O fluids of variable compositions. Three main types of fluid inclusions are recognized at room temperature: type I, two‐phase, aqueous vapor and an aqueous liquid phase (L+V); type II, aqueous‐carbonic inclusions, a CC2‐liquid with/without vapor and aqueous liquid (LCO2+VCC2+Laq.); type III, mono‐phase aqueous liquid (Laq.). Data from fluid inclusion distribution, microthermometry, and gas analysis indicate that fluids associated with Au mineralized quartz veins (stage 2) have moderate salinity ranging from 1.91 to 16.43 wt% NaCl equivalent (modeled salinity around 8–10 wt% NaCl equiv.). These veins formatted at temperatures from 80d? to 280d?C. Fluids associated with barren quartz veins (stage 3) have a low salinity of about 1.91 to 2.57 wt% NaCl equivalent and lower temperature. There is evidence of fluid immiscibility and boiling in ore‐forming stages. Stable isotope analyses of quartz indicate that the veins were deposited by waters with δO and δD values ranging from those of magmatic water to typical meteoric water. The gold metallogenesis of Muru gold belt has no relationship with the granite, and formed during the late stage of the crust thinning of North China.  相似文献   
48.
The structure and dynamics of 2-dimensional fluids in swelling clays   总被引:3,自引:0,他引:3  
The interlayer pores of swelling 2:1 clays provide an ideal 2-dimensional environment in which to study confined fluids. In this paper we discuss our understanding of the structure and dynamics of interlayer fluid species in expanded clays, based primarily on the outcome of recent molecular modelling and neutron scattering studies. Counterion solvation is compared with that measured in bulk solutions, and at a local level the cation-oxygen coordination is found to be remarkably similar in these two environments. However, for the monovalent ions the contribution to the first coordination shell from the clay surfaces increases with counterion radius. This gives rise to inner-sphere (surface) complexes in the case of potassium and caesium. In this context, the location of the negative clay surface charge (i.e. arising from octahedral or tetrahedral substitution) is also found to be of major importance. Divalent cations, such as calcium, eagerly solvate to form outer-sphere complexes. These complexes are able to pin adjacent clay layers together, and thereby prevent colloidal swelling. Confined water molecules form hydrogen bonds to each other and to the clays' surfaces. In this way their local environment relaxes to close to the bulk water structure within two molecular layers of the clay surface. Finally, we discuss the way in which the simple organic molecules methane, methanol and ethylene glycol behave in the interlayer region of hydrated clays. Quasi-elastic neutron scattering of isotopically labelled interlayer CH3OD and (CH2OD)2 in deuterated clay allows us to measure the diffusion of the CH3- and CH2-groups in both clay and liquid environments. We find that in both the one-layer methanol solvates and the two-layer glycol solvates the diffusion of the most mobile organic molecules is close to that in the bulk solution.  相似文献   
49.
50.
In their comment, Park & Ree have raised several points against the interpretation by Park et al. , and argued that the remagnetization in the Jeongseon area was caused by the thermal effects of a Late Cretaceous pluton and/or associated short-range hydrothermal fluids, rather than by long-range fluids advocated by us.
We disagree with most points raised by Park & Ree and we make a case that these are invalid because of what we believe is incorrect geologic evidence. Hence, our model—that the fluids causing the chemical remagnetization might migrate through the fault system within the Ogcheon Fold Belt—is the most plausible scenario. We recognize that our model needs to be tested in a future study and we welcome new interpretations for or against our model based on reliable geologic or geophysical data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号