首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   820篇
  免费   79篇
  国内免费   12篇
测绘学   10篇
大气科学   7篇
地球物理   254篇
地质学   517篇
海洋学   61篇
天文学   4篇
综合类   4篇
自然地理   54篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   9篇
  2018年   8篇
  2017年   16篇
  2016年   49篇
  2015年   34篇
  2014年   48篇
  2013年   223篇
  2012年   34篇
  2011年   40篇
  2010年   30篇
  2009年   18篇
  2008年   43篇
  2007年   24篇
  2006年   40篇
  2005年   57篇
  2004年   58篇
  2003年   49篇
  2002年   49篇
  2001年   8篇
  2000年   5篇
  1999年   14篇
  1998年   9篇
  1997年   6篇
  1996年   2篇
  1995年   4篇
  1993年   6篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有911条查询结果,搜索用时 281 毫秒
71.
An eruption on the eastern flank of Piton de la Fournaise volcano started on 16 November, 2002 after 10 months of quiescence. After a relatively constant level of activity during the first 13 days of the eruption, lava discharge, volcanic tremor and seismicity increased from 29 November to 3 December. Lava effusion suddenly ceased on 3 December while shallow earthquakes beneath the Dolomieu summit crater were still recorded at a rate of about one per minute. This unusual activity continued and increased in intensity over the next three weeks, ending with the formation of a pit crater within Dolomieu. Based on ground deformation, measured by rapid-static and continuous GPS and an extensometer, seismic data, and lava effusion patterns, the eruptive period is divided into five stages: 1) slow summit inflation and sporadic seismicity; 2) rapid summit inflation and a short seismic crisis; 3) rapid flank inflation, onset of summit deflation, sporadic seismicity, accompanied by stable effusion; 4) flank inflation, coupled with summit deflation, intense seismicity, and increased lava effusion; and finally 5) little deflation, intense shallow seismicity, and the end of lava effusion. We propose a model in which the pre-intrusive inflation of Stage 1 in the months preceding the eruption was caused by a magma body located near sea level. The magma reservoir was the source of an intrusion rising under the summit during Stage 2. In Stage 3, the magma ponded at a shallow level in the edifice while the lateral injection of a radial dike reached the surface on the eastern flank of the basaltic volcano, causing lava effusion. Pressure decrease in the magmatic plumbing system followed, resulting in upward migration of a collapse front, forming a subterranean column of debris by faulting and stoping. This caused intense shallow seismicity, increase in discharge of lava and volcanic tremor at the lateral vent in Stage 4 and, eventually the formation of a pit crater in Stage 5.  相似文献   
72.
The atmosphere and the ocean are subject to many dynamical instabilities, which limit the time during which their behaviour can be deterministically forecasted. At longer timescales, the atmosphere can be predicted at best using statistical methods, as a response to external forcing linked to sea- and land-surface anomalies. Climate being defined as the mean of atmospheric states, it appears that it can be predicted up to a few months in advance, which is the characteristic time of the so-called slow components of the climate system. Forecasting can sometimes be extended to longer time ranges, especially when the coupled ocean–atmosphere system exhibits internal variability modes, with characteristic times of a few years. Seasonal climate forecasting is most often based upon Monte-Carlo simulations, where the various realisations correspond to slightly different initial conditions. The present sate-of-the-art in Europe (ECMWF) and/or in the USA (IRI) allows to forecast such major phenomena, as El Niño, up to six months in advance. Finally, some parameters may exhibit predictability at still longer time-ranges (inter-annual to decadal), but only for certain regions. The example of electricity production is used to underline the potentially large economical benefit of seasonal climate forecasting. To cite this article: J.-C. André et al., C. R. Geoscience 334 (2002) 1115–1127.

Résumé

L'atmosphère et l'océan sont le siège d'instabilités dynamiques, qui limitent la durée pendant laquelle il est possible d'en prévoir l'évolution de façon déterministe. Au-delà, l'atmosphère n'est plus prévisible, au mieux, que de façon statistique, en fonction du forçage externe qu'exerce(nt) sur elle l'océan et/ou la surface des continents. Le climat (au sens d'une moyenne des états atmosphériques) se révèle ainsi prévisible jusqu'à des échéances temporelles de quelques mois, échelle de temps caractéristique des composantes dites « lentes » du système climatique. La prévision peut s'étendre à des échéances parfois plus longues, dans le cas où le système couplé océan–atmosphère posséderait des modes de variabilité temporelle de périodes caractéristiques de quelques années. La prévision climatique saisonnière est très souvent construite à partir de simulations de type Monte-Carlo, avec des ensembles de réalisations utilisant des conditions initiales légèrement différentes. Dans l'état actuel de ces prévisions, qu'elles soient réalisées en Europe (CEPMMT) ou aux États-Unis (IRI), il est possible de prévoir environ six mois à l'avance un certain nombre de phénomènes climatiques, en particulier ceux liés aux épisodes dits « El Niño », pour lesquels l'amplitude des variations est suffisamment importante. Il existe, par ailleurs, une prévisibilité à encore plus longue échéance (inter-annuelle à décennale), mais seulement pour certains paramètres et certaines régions. L'exemple de la production d'électricité montre l'importance économique potentielle très grande de la prévision climatique saisonnière. Pour citer cet article : J.-C. André et al., C. R. Geoscience 334 (2002) 1115–1127.  相似文献   
73.
In southwest Niger, the Continental Terminal water table displays a natural hollow shape about 10 m in depth over an area of 4000 km2. A 10-year survey of this hollow aquifer has shown that current recharge is above 20 mmyr?1. The water table has risen continuously since the 1950–1960s as a result of land clearance. This shows a disequilibrium in the aquifer balance. The long-term recharge rate is estimated by radioisotopes to be around mmyr?1. This figure fits with the only possible origin of the piezometric depression, i.e. evapotranspiration losses in its centre. To cite this article: G. Favreau et al., C. R. Geoscience 334 (2002) 395–401.  相似文献   
74.
Introduction Thepotentialvulnerabilityofsatellitenaviga tionsystemthatreliesongroundstationsisthat thesystemwouldbreakdownifgroundstations weredestroyed,whichcannotmeettherequire mentofnavigationwarfare[1].Withthedevelop mentofsuchspace basedsystemsasgrou…  相似文献   
75.
In July–August 2003, the andesitic lava dome at Volcán de Colima, México, was destroyed by a sequence of explosions that replaced the 2×106 m3 dome with a crater 200 m across and 30 m deep. The two strongest explosions occurred on July 17 and August 28. The initial low-frequency impulses that they produced, which were recorded on broadband seismic records, allowed an estimation of the counter forces of the initiating process as being equal to 0.3×1011 N and 1×1011 N for the July and August events, respectively. The seismic characteristics follow the Nishimura-Hamaguchi scaling law for volcanic explosions, reflecting self-similarity in the processes initiating explosive events. The results also show that counter forces can discriminate between the sizes of explosive eruptions that are assigned the same magnitude by conventional methods of classification such as the Volcanic Explosivity Index. The increasing use of broadband seismometers may therefore provide the basis for using counter forces to determine the magnitude of explosive eruptions.  相似文献   
76.
A clear model of structures and associated stress fields of a volcano can provide a framework in which to study and monitor activity. We propose a volcano-tectonic model for the dynamics of the summit of Piton de la Fournaise (La Reunion Island, Indian Ocean). The summit contains two main pit crater structures (Dolomieu and Bory), two active rift zones, and a slumping eastern sector, all of which contribute to the actual fracture system. Dolomieu has developed over 100 years by sudden large collapse events and subsequent smaller drops that include terrace formation. Small intra-pit collapse scars and eruptive fissures are located along the southern floor of Dolomieu. The western pit wall of Dolomieu has a superficial inward dipping normal fault boundary connected to a deeper ring fault system. Outside Dolomieu, an oval extension zone containing sub-parallel pit-related fractures extends to a maximum distance of 225 m from the pit. At the summit the main trend for eruptive fissures is N80°, normal to the north–south rift zone. The terraced structure of Dolomieu has been reproduced by analogue models with a roof to width ratio of approximately 1, suggesting an original magma chamber depth of about 1 km. Such a chamber may continue to act as a storage location today. The east flank has a convex–concave profile and is bounded by strike-slip fractures that define a gravity slump. This zone is bound to the north by strike-slip fractures that may delineate a shear zone. The southern reciprocal shear zone is probably marked by an alignment of large scoria cones and is hidden by recent aa lavas. The slump head intersects Dolomieu pit and may slide on a hydrothermally altered layer known to be located at a depth of around 300 m. Our model has the summit activity controlled by the pit crater collapse structure, not the rifts. The rifts become important on the mid-flanks of the cone, away from pit-related fractures. On the east flank the superficial structures are controlled by the slump. We suggest that during pit subsidence intra-pit eruptions may occur. During tumescence, however, the pit system may become blocked and a flank eruption is more likely. Intrusions along the rift may cause deformation that subsequently increases the slump’s potential to deform. Conversely, slumping may influence the east flank stress distribution and locally control intrusion direction. These predictions can be tested with monitoring data to validate the model and, eventually, improve monitoring.  相似文献   
77.
Studies on the biodiversity and population dynamics of freshwater planktonic Gastrotricha have been carried out in conjunction with a physical–chemical analysis of the water in the Yaounde Municipal Lake (Cameroon, Central Africa) over a 14 months period (November 1996–December 1997). The results obtained allow to consider the Yaounde Municipal Lake as an eutrophic lake. It harbours eight species of Gastrotricha belonging to four genera (Chaetonotus, Dasydytes, Neogossea and Polymerurus) of the order Chaetonotida. This community was characterized by high abundances of populations, and was dominated by the genus Neogossea and Chaetonotusreaching up to 2000 ind. L−1. Polymerurus was mostly abundant at the almost anoxic bottom layers. The highest abundances were found mostly during the rainy season, when there is an important sedimentation process of organic matter, and were influenced by several different environmental factors such as dissolved oxygen, temperature and pH of the water.

Finally this community which may play an important role in the water bodies, is a potential water quality indicator.  相似文献   

78.
79.
The Valley of Toluca is a major industrial and agricultural area in Central Mexico, especially the City of Toluca, the capital of The State of Mexico. The Nevado de Toluca volcano is located to the southwest of The Toluca Basin. Results obtained from the vulnerability assessment phase of the study area (5,040 km2 and 42 municipalities) are presented here as a part of a comprehensive volcanic risk assessment of The Toluca Basin. Information has been gathered and processed at a municipal level including thematic maps at 1:250,000 scale. A database has been built, classified and analyzed within a GIS environment; additionally, a Multi-Criteria Evaluation (MCE) approach was applied as an aid for the decision-making process. Cartographic results were five vulnerability maps: (1) Total Population, (2) Land Use/Cover, (3) Infrastructure, (4) Economic Units and (5) Total Vulnerability. Our main results suggest that the Toluca and Tianguistenco urban and industrial areas, to the north and northeast of The Valley of Toluca, are the most vulnerable areas, for their high concentration of population, infrastructure, economic activity, and exposure to volcanic events.  相似文献   
80.
We develop and test an algorithm for modeling and removing elevation error in kinematic GPS trajectories in the context of a kinematic GPS survey of the salar de Uyuni, Bolivia. Noise in the kinematic trajectory ranges over 15 cm and is highly autocorrelated, resulting in significant contamination of the topographic signal. We solve for a noise model using crossover differences at trajectory intersections as constraints in a least-squares inversion. Validation of the model using multiple realizations of synthetic/simulated noise shows an average decrease in root-mean-square-error (RMSE) by a factor of four. Applying the model to data from the salar de Uyuni survey, we find that crossover differences drop by a factor of eight (from an RMSE of 5.6 to 0.7 cm), and previously obscured topographic features are revealed in a plan view of the corrected trajectory. We believe that this algorithm can be successfully adapted to other survey methods that employ kinematic GPS for positioning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号