首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  国内免费   6篇
地球物理   4篇
地质学   29篇
  2023年   1篇
  2021年   1篇
  2017年   2篇
  2014年   1篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   7篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有33条查询结果,搜索用时 0 毫秒
31.
Textural maturity describes the extent to which a rock has evolvedfrom the initial reaction-controlled texture towards texturalequilibrium controlled by the minimization of interfacial energy.Solidification in a magma chamber results in the formation ofan impingement texture by the random juxtaposition of planar-sidedgrains. Orthocumulates, in which the initial melt-filled poresare pseudomorphed by later-crystallizing phases, have an ophiticor intersertal texture immediately after complete solidification,which then evolves towards solid-state equilibrium by roundingof initially planar grain boundaries and an increase in themedian dihedral angle subtended at the junctions of two primocrysticgrains with the interstitial phase. The bulk of the increasein angle occurs just below the solidus temperature in kilometre-scalemafic plutons. Quantification of textural maturity via measurementof dihedral angle populations in troctolitic and gabbroic cumulatesfrom the Rum Eastern Layered Intrusion and the Skaergaard Intrusiondemonstrates that the rocks preserve a record of thermal eventsrelated to magma chamber replenishment and the onset of chamber-wideconvection. Textural maturity is also a function of the liquidusphase assemblage: for systems in which only olivine and plagioclaseare liquidus (i.e. cumulus) phases in the main magma body abovethe crystal mush, the texture is significantly less mature thanthat in systems in which clinopyroxene is an additional liquidusphase. The difference in textural maturity reflects differencesin the cooling and solidification rate, and demonstrates directlythat the liquidus phase assemblage plays a role in determiningthe thermal history of plutons. KEY WORDS: cumulates; dihedral angles; Rum; Skaergaard; textures  相似文献   
32.
The Erro-Tobbio peridotites (Voltri Massif, Ligurian Alps) represent subcontinental lithospheric mantle tectonically exhumed during Permo–Mesozoic extension of the Europe–Adria lithosphere. Previous studies have shown that exhumation started during Permian times, and occurred along kilometer-scale lithospheric shear zones which enhanced progressive deformation and recrystallization from spinel- to plagioclase-facies conditions. Ongoing field and petrologic investigations have revealed that the peridotites experienced, during uplift, a composite history of diffuse melt migration and multiple episodes of ultramafic–mafic intrusions. In this paper we present the results of field, structural and petrologic–geochemical investigations into a sector of the Erro-Tobbio peridotite unit that preserves well this multiple intrusion history. Melt impregnation in the peridotites is evidenced by significant plagioclase enrichment and crystallization of unstrained orthopyroxene replacing kinked mantle olivine and clinopyroxene; impregnating melts were thus opx-saturated. Melt–rock interaction caused chemical changes in mantle minerals (e.g. Al decrease and REE increase in cpx; Ti and Cr# enrichment in spinel). Nevertheless, clinopyroxenes still exhibit LREE depletion (CeN/SmN = 0.006–0.011), indicating a depleted signature for the percolating melts. Melt impregnation was thus related to diffuse porous flow migration of depleted MORB-type melt fractions that modified their compositions towards opx saturation by mantle–melt interaction during ascent. The impregnated peridotites are intruded by a hectometer-scale stratified cumulate body, mostly consisting of troctolites and plagioclase wehrlites, showing gradational, interfingered contacts with the host mantle rocks. Subsequent intrusion events are revealed by the occurrence of olivine gabbros as decameter-wide lenses, variably thick (centimeter- to meter-scale) dykes and thin dykelets, which crosscut both the peridotite foliation and the magmatic layering in the cumulates. Overall, major and trace element compositions of minerals in the intrusives indicate that they represent variably differentiated cumulus products crystallized from rather primitive N-MORB-type aggregated melts. Slightly more evolved compositions are shown by olivine gabbros, relative to the troctolites and plagioclase wehrlites of the cumulate body. Mineral chemistry features (e.g. the Fo–An correlation and high Na, Ti, Mg# in cpx) indicate that the studied intrusive rocks crystallized at moderate pressure conditions (3–5 kbar, i.e. 9–15 km depth). Our study thus points to a progressive transition from porous flow melt migration to emplacement of magmas in fractures, presumably related to progressive change of lithospheric mantle rheology during extension-related uplift and cooling.  相似文献   
33.
《International Geology Review》2012,54(11):1401-1417
The high-pressure (HP) Piaxtla Suite at Tehuitzingo contains peridotites, gabbros, and serpentinized peridotites, as well as granitoids and metasedimentary rocks. The HP mafic rocks are characterized by low SiO2 (38–52 wt.%) and high Mg# (~48–70), Ni (100–470 ppm), and Cr (180–1750 ppm), typical of cumulate compositions. Trace elements and rare earth element (REE) primitive mantle-normalized patterns display generally flat profiles, indicative of derivation from a primitive mantle with two distinct patterns: (1) gabbroic patterns are characterized by a positive Eu anomaly, low REE abundances, and slightly depleted high REE (HREE) relative to low REE (LREE), typical of cumulus olivine, pyroxene, and plagioclase; and (2) mafic-intermediate gabbroic patterns exhibit very flat profiles characteristic of olivine and clinopyroxene as cumulus minerals. Their Nb/Y and Zr/TiO2 ratios suggest a subalkaline character, whereas low Ti/V ratios indicate that the Tehuitzingo cumulates are island arc tholeiitic basalts that resemble modern, immature oceanic, forearc magmas. These cumulates have high values of ? Nd(t) = 5.3–8.5 and 147Sm/144Nd = 0.18–0.23, which renders calculations of model ages meaningless. Our data are consistent with the Tehuitzingo arc rocks being part of a tectonically extruded Devonian–early Carboniferous arc developed along the west margin of Gondwana.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号