首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5277篇
  免费   2104篇
  国内免费   387篇
测绘学   126篇
大气科学   191篇
地球物理   3795篇
地质学   2429篇
海洋学   450篇
天文学   334篇
综合类   44篇
自然地理   399篇
  2024年   5篇
  2023年   11篇
  2022年   25篇
  2021年   96篇
  2020年   107篇
  2019年   295篇
  2018年   476篇
  2017年   505篇
  2016年   555篇
  2015年   490篇
  2014年   514篇
  2013年   809篇
  2012年   508篇
  2011年   467篇
  2010年   381篇
  2009年   293篇
  2008年   368篇
  2007年   266篇
  2006年   256篇
  2005年   258篇
  2004年   212篇
  2003年   203篇
  2002年   176篇
  2001年   146篇
  2000年   163篇
  1999年   50篇
  1998年   14篇
  1997年   30篇
  1996年   13篇
  1995年   10篇
  1994年   18篇
  1993年   12篇
  1992年   8篇
  1991年   10篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1972年   1篇
  1954年   1篇
排序方式: 共有7768条查询结果,搜索用时 375 毫秒
961.
Rhenium–osmium geochronometry for samples with low Re and complex matrices requires improved Re extraction methods. Here, we investigate plausible controls on efficiency and efficacy of Re extraction during our anion resin bead purification. Four different protocols are compared, each isolating a single variable to test. Rhenium concentrations for solutions at each step of each protocol document differences in chemical recovery/yield. The negative‐thermal ionisation mass spectrometry (N‐TIMS) signal intensity serves as a proxy for Re yield and purity. These data document correlations between the N‐TIMS signal intensity and (a) the duration of anion resin bead conditioning prior to loading with Re‐bearing solution, and (b) both duration and strength of nitric acid used during rinsing of the Re‐loaded anion resin bead. The optimal protocol improved Re signal intensity around fourteen times compared with our current Re extraction protocol, an aggregate of 2.4 times improvement in chemical recovery (yield) and 5.8 times improvement in emission efficiency (purity). Repeated N‐TIMS isotopic measurements on our in‐house Re standard solution (1407) verify that our optimal protocol‐3 does not fractionate Re isotopes. The improved anion resin bead method considerably lowers the Re detection limit and allows Re‐Os isotopic analysis of picogram‐level Re hosted in geological samples with complex matrices.  相似文献   
962.
The accurate and precise determination of Li isotopic composition by MC‐ICP‐MS suffers from the poor performance of traditional column chromatography. Previously established chromatographic processes cannot completely remove Na in complex geological samples, which is currently interpreted to be a result of Na breakthrough. In this study, Na breakthrough during single‐column purification was found to differ between simply artificial Na‐containing sample solutions, where a little Na residue was found, and silicate rocks, where a large amount of breakthrough occurred. A revised two‐step column purification for Li using 0.5 and 0.3 mol l?1 HCl as eluents was designed to remove the Na. This modified method achieves high‐efficiency Li purification from Na and consequently avoiding high Na/Li ratio interference for subsequent MC‐ICP‐MS analyses. The proposed method was validated by the analysis of a series of reference materials, including Li2CO3 (IRMM‐016, ‐0.10‰), basalt (BCR‐2: 2.68‰; BHVO‐2: 4.39‰), andesite (AGV‐2: 6.46‰; RGM‐2: 2.59‰), granodiorite (GSP‐2: ?0.87‰) and seawater (CASS‐5, 30.88‰). This work reports early Na appearance prior to the elution curves in chromatography and emphasises its influence for subsequent Li isotope measurement. Based on the findings, the established two‐step method would be more secure than single‐column chemistry for Li purification.  相似文献   
963.
The Yangla deposit is an intrusion‐related Cu deposit in the Jinshajiang tectonic belt (eastern Sanjiang region, SW China). Despite extensive studies that have been conducted on this deposit, the relationship between the granitic magma and Cu mineralization is still unclear, and hence, the genesis is debated. To answer this question, we conducted an integrated study of mineralogy, fluid inclusions (FIs), and hydrogen and oxygen (H‐O) isotopes. Three mineralization stages were identified based on the ore textures, alteration zonation, and crosscutting relationships: (i) pre‐ore prograde skarn (stage I), with the garnet and pyroxene dominated by andradite and diopside, respectively; (ii) syn‐ore retrograde alteration (stage II), which is subdivided into the early syn‐ore stage (stage IIa) marked by retrograde hydrated mineral assemblages and significant Fe‐Cu‐Mo‐Pb‐Zn sulfide mineralization, and the late syn‐ore stage (stage IIb) featured by quartz‐calcite veins; and (iii) late supergene mineralization (stage III), which is characterized by secondary azurite and malachite. These results of mineralogy, FIs, and H‐O isotopes indicate that: (i) Cu mineralization has a close temporal, spatial, and genetic relationship with skarn alteration; (ii) the ore fluids were magmatic dominated with late‐stage meteoric water incursion; and (iii) Type‐S (halite‐bearing) and Type‐V (vapor‐rich) FIs coexisted in garnet and clinopyroxene of stage I, indicating that fluid boiling might have occurred during this stage. From stage I to stage IIa, the FI type transformed from Type‐S + Type‐V + Type‐L (liquid‐rich) to Type‐V + Type‐L with the conduct of mineralization and was accompanied by the disappearance of Type‐S, and homogenization temperature and salinity also tended to decrease dramatically, which may be caused by the deposition of skarn minerals. At stage IIa, boiling of the ore fluids still continued due to the change from lithostatic to hydrostatic pressure, which triggered the precipitation of abundant quartz‐Cu‐Mo‐Fe sulfides. Furthermore, fluid mixing between a high‐temperature magmatic fluid and a low‐temperature meteoric water might cause a considerable drop in temperature and the deposition of Cu‐bearing quartz/calcite veins during stage IIb. Hence, we consider the Yangla deposit to be of a skarn type, genetically related to the Mesozoic magmatism in the Sanjiang region.  相似文献   
964.
Classic porphyry Cu–Mo deposits are mostly characterized by close temporal and spatial relationships between Cu and Mo mineralization. The northern Dabate Cu–Mo deposit is a newly discovered porphyry Cu–Mo polymetallic deposit in western Tianshan, northwest China. The Cu mineralization postdates the Mo mineralization and is located in shallower levels in the deposit, which is different from most classic porphyry Cu–Mo deposits. Detailed field investigations, together with microthermometry, laser Raman spectroscopy, and O‐isotope studies of fluid inclusions, were conducted to investigate the origin and evolution of ore‐forming fluids from the main Mo to main Cu stage of mineralization in the deposit. The results show that the ore‐forming fluids of the main Mo stage belonged to an NaCl + H2O system of medium to high temperatures (280–310°C) and low salinities (2–4 wt% NaCl equivalent (eq.)), whereas that of the main Cu stage belonged to an F‐rich NaCl + CO2 + H2O system of medium to high temperatures (230–260°C) and medium to low salinities (4–10 wt% NaCl eq.). The δ18O values of the ore‐forming fluids decrease from 3.7–7.8‰ in the main Mo stage to ?7.5 to ?2.9‰ in the main Cu stage. These data indicate that the separation of Cu and Mo was closely related to a large‐scale vapor–brine separation of the early ore‐forming fluids, which produced the Mo‐bearing and Cu‐bearing fluids. Subsequently, the relatively reducing (CH4‐rich) Mo‐bearing, ore‐forming fluids, dominantly of magmatic origin, caused mineralization in the rhyolite porphyry due to fluid boiling, whereas the relatively oxidizing (CO2‐rich) Cu‐bearing, ore‐forming fluids mixed with meteoric water and precipitated chalcopyrite within the crushed zone at the contact between rhyolite porphyry and wall rock. We suggest that the separation of Cu and Mo in the deposit may be attributed to differences in the chemical properties of Cu and Mo, large‐scale vapor–brine separation of early ore‐forming fluids, and changes in oxygen fugacity.  相似文献   
965.
Large proportions of rainwater and snowmelt infiltrate into the subsurface before contributing to stream flow and stream water quality. Subsurface flow dynamics steer the transport and transformation of contaminants, carbon, weathering products and other biogeochemistry. The distribution of groundwater ages with depth is a key feature of these flow dynamics. Predicting these ages are a strong test of hypotheses about subsurface structures and time-varying processes. Chlorofluorocarbon (CFC)-based groundwater ages revealed an unexpected groundwater age stratification in a 0.47 km2 forested catchment called Svartberget in northern Sweden. An overall groundwater age stratification, representative for the Svartberget site, was derived by measuring CFCs from nine different wells with depths of 2–18 m close to the stream network. Immediately below the water table, CFC-based groundwater ages of already 30 years that increased with depth were found. Using complementary groundwater flow models, we could reproduce the observed groundwater age stratification and show that the 30 year lag in rejuvenation comes from return flow of groundwater at a subsurface discharge zone that evolves along the interface between two soil types. By comparing the observed groundwater age stratification with a simple analytical approximation, we show that the observed lag in rejuvenation can be a powerful indicator of the extent and structure of the subsurface discharge zone, while the vertical gradient of the age-depth-relationship can still be used as a proxy of the overall aquifer recharge even when sampled in the discharge zone. The single age stratification profile measured in the discharge zone, close to the aquifer outlet, can reveal the main structure of the groundwater flow pattern from recharge to discharge. This groundwater flow pattern provides information on the participation of groundwater in the hydrological cycle and indicates the lower boundary of hydrological connectivity.  相似文献   
966.
强震作用下铁路隧道横通道交叉结构抗震措施研究   总被引:1,自引:0,他引:1       下载免费PDF全文
依托四川茂县跃龙门铁路隧道工程,以主线单线隧道与横通道正交结构为研究对象,通过ABAQUS建立有限元分析模型。选取El-Centro地震波数据,通过应用扩展有限元理论,对横通道与主隧道交叉结构在最不利地震条件下的裂损进行研究,并提出减震层结合柔性接头的抗震措施。研究分析得到:减震层结合柔性接头的设置减小并抑制了交叉结构隧道在强震作用下的开裂范围。柔性接头的设置阻止了纵向裂缝的扩展,在交叉口处中部设置环向柔性接头能完全阻止交叉部位拱顶的裂缝生成;在初期支护和二次衬砌之间设置减震层,给予衬砌更大变形空间,使二次衬砌不易受初期支护变形受力影响而开裂。  相似文献   
967.
We investigated the tectonothermal history of the Lesser Himalayan sediments (LHS), which are tectonically overlain by the Higher Himalayan Crystalline. Fission‐track dating and the track length measurement of detrital zircons obtained from the Kuncha nappe and the Lesser Himalayan autochthonous sediments in western central Nepal revealed northward cooling of the nappe and possible downward heating of the autochthon by the overlying hot nappe. Nine zircon fission‐track (ZFT) ages of the nappe showed northward‐younging linear distribution from 11.6 Ma in the front at Tamghas, 6 Ma in the central at Naudanda, and 1.6 Ma in the northernmost point at Tatopani. Thermochronological invert calculation of the ZFT length elucidated that the Kuncha nappe gradually cooled down (30 °C/Myr) at the front and rapidly cooled down (120 °C/Myr) at the root zone. In contrast, the ZFT age of the Chappani Formation, located just beneath the Kuncha nappe in the central part, demonstrated a totally reset age of 6.8 Ma, whereas the Virkot Formation, structurally far from the nappe, yielded a partially reset age of 457.3 Ma. This suggests that the LHS underwent downward heating, resulting in a thermal print on the upper part of the LHS; however, the thermal effect was not sufficient to anneal ZFT totally in the deeper part. Presently, the nappe cover is eroded and denuded from this area. Detrital zircons from the Chappani Formation in Tansen area to the south of the Bari Gad Fault did not show any evidence of annealing, suggesting that nappe never covered the LHS distributed to the south of the fault.  相似文献   
968.
This study is concerned with the tectono‐thermal history of the Kathmandu nappe and the underlying Lesser Himalayan sediments (LHS) that are distributed in eastern Nepal. We carried out zircon fission‐track(ZFT) dating and obtained 16 ZFT ages from the eastern extension of the Kathmandu nappe, the Higher Himalayan Crystalline, Kuncha nappe, and the Main Central Thrust (MCT) zone. The ZFT ages of the frontal part of the Kathmandu nappe range from 13.0 ±0.8 Ma to 10.7 ±0.7 Ma and exhibit a northward‐younging tendency. These Middle Miocene ZFT ages indicate that the frontal part of the Kathmandu nappe remained at a temperature above 240 °C until the termination of its southward emplacement at 12–11 Ma. The ZFT ages of the LHS range from 11.1 ±0.9 Ma in the southern part of the Okhaldhunga Window to 2.4 ±0.3 Ma of the augen gneiss in the northern margin and also exhibit a northward‐younging age distribution. The ZFT ages show the northward‐younging linear distribution pattern (?0.16 Ma/km) along the across‐strikesection from the frontal part of the Kathmandu nappe to the root zone, without a significant age gap. This distribution pattern indicates that the Kathmandu nappe, the underlying MCT zone, and the Kuncha nappe cooled from the frontal zone to the root zone as a thermally united geologic body at a temperature below 240 °C. An older ZFT age (456.3 ±24.3 Ma), which was partially reset at the axial part of the Midland anticlinorium in the central part of the Okhaldhunga Window, was explained by downward heating from the “hot” Kathmandu nappe. The above evidence supported a model that southward emplacement of the hot Kathmandu nappe resulted in a thermal imprint on the upper part of the LHS; however, the lower part did not reach 240 °C.  相似文献   
969.
Middle–Late Miocene age siliceous formations outcropping along the northwestern side of Honshu Island are considered prospective source rocks for hydrocarbons. An analysis of geophysical, sedimentological, and geochemical properties is essential to evaluate the formations' source potential, and to understand the factors that determined the accumulation and preservation of organic matter. This study investigates the Middle–Late Miocene geological record of the Tsugaru back‐arc basin, located in the western part of Aomori prefecture, through an analysis of a 200 m long portion of a core from the DTH27‐1 well; this core is composed of the diatomaceous siltstones of the Akaishi Formation and the siliceous mudstones of the Odoji Formation. Sedimentological and geophysical characterization showed that the Akaishi Formation's diatomaceous siltstones are mostly massive and bioturbated, have low magnetic susceptibility, and demonstrate moderate natural radioactivity. Although the Odoji Formation's siliceous mudstones are massive, they have exceedingly low magnetic susceptibility and high natural radioactivity. Geochemical data from a Rock‐Eval Pyrolysis such as total organic carbon and generative potential (S1 + S2) revealed that, in the Tsugaru area, only the Odoji Formation is a likely prospective source rock for hydrocarbons. On the other hand, Tmax values indicate that both the formations are thermally immature for generating hydrocarbons. The difference between the Akaishi and Odoji Formation in the sedimentological facies, in terms of the degree of bioturbation and the organic carbon content, indicates variations in lithological properties, such as porosity and grain size; moreover, this difference indicates a variation in the paleo‐oxygenation of bottom waters, with the transition from oxygen‐deficient conditions in the Middle Miocene to the more oxygenated conditions in the Late Miocene. Both the lithological and paleo‐environmental factors possibly influenced the organic richness in the two formations.  相似文献   
970.
Manganiferous rocks in the Mankwadzi area in the southernmost portion of the Kibi‐Winneba metavolcanic belt, one of several Mn occurrences in the Paleoproterozoic Birimian of Ghana, are hosted in hornblende schist and amphibolite. These rocks are, in places, intruded by hornblende dyke. In outcrop, the manganiferous rocks appear to be conformable with the host schist and amphibolite, are macroscopically dark, fine‐grained and structurally massive to distinctly banded. Observed alternating light and dark occasionally macro‐folded bands suggest post‐depositional deformation of both light and dark bands. Microscopic observations revealed that the light bands are dominantly Si‐rich and the dark bands mainly of opaque minerals. Whole rock analyses of the manganiferous rocks show high contents of MnO (16.75–27.4 wt%) suggesting that the opaque minerals are likely rich in Mn. The analyzed rock samples show moderate to strong enrichments in light rare earth elements compared to heavy rare earth elements. Whereas the manganiferous rocks show perceptibly negative Eu anomaly, host hornblende schist and hornblende dyke do not. Eu anomaly in amphibolite samples is, however, uncertain as the three samples analyzed gave positive, negative and no Eu anomalies. Based on the field characteristics, microscopic and geochemical features, we suggest that the Mn occurrence in the Mankwadzi area originated via sedimentary deposition and was later modified by metamorphism, hydrothermal and/or supergene processes similar to manganiferous occurrences at Nsuta and Tambao in the Birimian of West Africa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号