首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   43篇
  国内免费   29篇
大气科学   1篇
地球物理   116篇
地质学   119篇
海洋学   7篇
天文学   1篇
综合类   1篇
自然地理   20篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   5篇
  2020年   12篇
  2019年   18篇
  2018年   13篇
  2017年   17篇
  2016年   7篇
  2015年   15篇
  2014年   12篇
  2013年   6篇
  2012年   14篇
  2011年   13篇
  2010年   9篇
  2009年   13篇
  2008年   16篇
  2007年   19篇
  2006年   15篇
  2005年   5篇
  2004年   6篇
  2003年   6篇
  2002年   9篇
  2001年   2篇
  2000年   6篇
  1998年   6篇
  1997年   5篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
排序方式: 共有265条查询结果,搜索用时 843 毫秒
221.
222.
223.
224.
225.
Modelling palaeoglaciers in mountainous terrain is challenging due to the need for detailed ice flow computations in relatively narrow and steep valleys, high-resolution climate estimations, knowledge of pre-ice topography, and proxy-based palaeoclimate forcing. The Parallel Ice Sheet Model (PISM), a numerical model that approximates glacier sliding and deformation to simulate large ice sheets such as Greenland and Antarctica, was recently adapted to alpine environments. In an attempt to reconstruct the climate conditions during the Last Glacial Maximum (LGM) on Mount Dedegöl in SW Turkey, we used PISM and explored palaeoglacier dynamics at high spatial resolution (100 m) in a relatively small domain (225 km2). Palaeoice-flow fields were modelled as a function of present temperature and precipitation. Nine different palaeoclimate simulations were run to reach the steady-state glacier extents and the modelled glacial areas were compared with the field-based and chronologically well-established ice extents. Although our results provide a non-unique solution, best-fit scenarios indicate that the LGM climate on Mount Dedegöl was between 9.2 and 10.6 °C colder than today, while precipitation levels were the same as today. More humid (20% wetter) or arid (20% drier) conditions than today bring the palaeotemperature estimates to 7.7–8.8 or 11.5–13.2 °C lower than present, respectively.  相似文献   
226.
Decoupling the impacts of climate and tectonics on hillslope erosion rates is a challenging problem. Hillslope erosion rates are well known to respond to changes in hillslope boundary conditions (e.g. channel incision rates) through their dependence on soil thickness, and precipitation is an important control on soil formation. Surprisingly though, compilations of hillslope denudation rates suggest little precipitation sensitivity. To isolate the effects of precipitation and boundary condition, we measured rates of soil production from bedrock and described soils on hillslopes along a semi‐arid to hyperarid precipitation gradient in northern Chile. In each climate zone, hillslopes with contrasting boundary conditions (actively incising channels versus non‐eroding landforms) were studied. Channel incision rates, which ultimately drive hillslope erosion, varied with precipitation rather than tectonic setting throughout the study area. These precipitation‐dependent incision rates are mirrored on the hillslopes, where erosion shifts from relatively fast and biologically‐driven to extremely slow and salt‐driven as precipitation decreases. Contrary to studies in humid regions, bedrock erosion rates increase with precipitation following a power law, from ~1 m Ma?1 in the hyperarid region to ~40 m Ma?1 in the semi‐arid region. The effect of boundary condition on soil thickness was observed in all climate zones (thicker soils on hillslopes with stable boundaries compared to hillslopes bounded by active channels), but the difference in bedrock erosion rates between the hillslopes within a climate region (slower erosion rates on hillslopes with stable boundaries) decreased as precipitation decreased. The biotic‐abiotic threshold also marks the precipitation rate below which bedrock erosion rates are no longer a function of soil thickness. Our work shows that hillslope processes become sensitive to precipitation as life disappears and the ability of the landscape to respond to tectonics decreases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
227.
The question of whether millennial‐scale geological slip rates are consistent with decade‐scale geodetic slip rates is of great importance in evaluating the nature of continental deformation within the Tibetan Plateau. We determined the time‐averaged slip rate of the Sulu He segment of the Altyn Tagh Fault, near Changma in Gansu Province, China, based on geomorphic analysis, remote sensing data, and cosmogenic 10Be surface‐exposure age dating. Quaternary alluvial fan deposits in the study area (Qf1, Qf2, Qf3) are displaced by left‐lateral movement along the Altyn Tagh Fault. Because of the large accumulated displacement of these fans, some of them have become disconnected from the fan apexes that are directly linked to the debris‐source areas in the piedmont of the Qilian Shan to the south. The total minimum offsets are estimated to be about 429 ± 41 m for Qf1, about 130 ± 10 m for Qf2, and 32 ± 1 m for Qf3. The 10Be surface‐exposure ages obtained for Qf1 and Qf2 are 100–112 ka and 31–43 ka, respectively. Accordingly, the slip rate since the period of Qf1 and Qf2 depositions is calculated to have been about 3.7 mm/yr.  相似文献   
228.
Many glacial deposits in the Quartermain Mountains, Antarctica present two apparent contradictions regarding the degradation of unconsolidated deposits. The glacial deposits are up to millions of years old, yet they have maintained their meter‐scale morphology despite the fact that bedrock and regolith erosion rates in the Quartermain Mountains have been measured at 0·1–4·0 m Ma?1. Additionally, ground ice persists in some Miocene‐aged soils in the Quartermain Mountains even though modeled and measured sublimation rates of ice in Antarctic soils suggest that without any recharge mechanisms ground ice should sublimate in the upper few meters of soil on the order of 103 to 105 years. This paper presents results from using the concentration of cosmogenic nuclides beryllium‐10 (10Be) and aluminum‐26 (26Al) in bulk sediment samples from depth profiles of three glacial deposits in the Quartermain Mountains. The measured nuclide concentrations are lower than expected for the known ages of the deposits, erosion alone does not always explain these concentrations, and deflation of the tills by the sublimation of ice coupled with erosion of the overlying till can explain some of the nuclide concentration profiles. The degradation rates that best match the data range 0·7–12 m Ma?1 for sublimation of ice with initial debris concentrations ranging 12–45% and erosion of the overlying till at rates of 0·4–1·2 m Ma?1. Overturning of the tills by cryoturbation, vertical mixing, or soil creep is not indicated by the cosmogenic nuclide profiles, and degradation appears to be limited to within a few centimeters of the surface. Erosion of these tills without vertical mixing may partially explain how some glacial deposits in the Quartermain Mountains maintain their morphology and contain ground ice close to the surface for millions of years. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
229.
本文讨论了~(129)Ⅰ的三个起源:大气起源、地下起源和人工起源,通过三个实例,介绍了~(129)Ⅰ在石油勘探、水文地质研究和环境监测中的应用进展,并且指出了未来研究方向。  相似文献   
230.
Transient evolution and adjustment to changing tectonic and climatic boundary conditions is an essential attribute of landscapes, and characterizing transient behavior is a key to understanding their dynamics and history. Developing new approaches to detect such transience has been explored by various methods, in particular to identify landscape response to Late Cenozoic and Quaternary climatic changes. Such studies have often focused on regions of high relief and/or active tectonic activity where interferences between tectonic and climatic signals might complicate the interpretation of the observations. We investigated the case of the hillslopes of the Serra do Cipó quartzitic range in SE Brazil in order to detect and quantify transience in a tectonically quiescent landscape over 100-ka timescales. We determined hilltop curvature from a high-resolution digital surface model derived from Pléiades imagery and measured cosmogenic nuclide (10Be and 26Al) concentrations at these hilltop sites. We compare both observations with predictions of hillslope diffusion theory, observing a distinctive signature of an acceleration of denudation. We performed a joint inversion of topographic and isotopic data to retrieve an evolution of the hillslope sediment transport coefficient through time. The timing of the increase in denudation cannot be unequivocally associated with a single climatic event but is consistent with important, climatically modulated fluctuations in precipitation and erosion in this area during the Middle and Late Pleistocene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号