首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2263篇
  免费   94篇
  国内免费   230篇
测绘学   216篇
大气科学   135篇
地球物理   540篇
地质学   1190篇
海洋学   181篇
天文学   65篇
综合类   41篇
自然地理   219篇
  2024年   19篇
  2023年   51篇
  2022年   66篇
  2021年   96篇
  2020年   185篇
  2019年   117篇
  2018年   141篇
  2017年   198篇
  2016年   140篇
  2015年   166篇
  2014年   252篇
  2013年   397篇
  2012年   258篇
  2011年   41篇
  2010年   30篇
  2009年   31篇
  2008年   34篇
  2007年   41篇
  2006年   27篇
  2005年   42篇
  2004年   37篇
  2003年   33篇
  2002年   43篇
  2001年   38篇
  2000年   17篇
  1999年   14篇
  1998年   14篇
  1997年   13篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   10篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1984年   1篇
  1983年   1篇
排序方式: 共有2587条查询结果,搜索用时 718 毫秒
191.
Analysis of long-term solar data from different observatories is required to compare and confirm the various level of solar activity in depth. In this paper, we study the north–south asymmetry of monthly mean sunspot area distribution during the cycle-23 and rising phase of cycle-24 using the data from Kodaikanal Observatory (KO), Michelson Doppler Imager (MDI) and Solar Optical Observing Network (SOON). Our analysis confirmed the double peak behavior of solar cycle-23 and the dominance of southern hemisphere in all the sunspot area data obtained from three different resources. The analysis also showed that there is a 5–6 months time delay in the activity levels of two hemispheres. Furthermore, the wavelet analysis carried on the same data sets showed several known periodicities (e.g., 170–180 days, 2.1 year) in the north–south difference of sunspot area data. The temporal occurrence of these periods is also the same in all the three data sets. These results could help in understanding the underlying mechanism of north–south asymmetry of solar activity.  相似文献   
192.
Abstract

Intervention experiments using the Coupled Forecast System model, version 2 (CFSv2), have been performed in which various Madden-Julian Oscillation (MJO) evolutions were added to the model’s internally generated heating: Slow Repeated Cycles, Slow Single Cycle, Fast Repeated Cycles, and Fast Single Cycle. In each experiment, one of these specified MJO evolutions of tropical diabatic heating was added in multiple ensemble reforecasts of boreal winter (1 November to 31 March for 31 winters: 1980–2010). Since in each experiment, multiple re-forecasts were made with the identical heating evolution added, predictable component analysis is used to identify modes with the highest signal-to-noise ratio. Traditional MJO-phase analysis of total model heating (dominated by internally generated heating) shows that the MJO-related heating structure compares well with heating estimated from observed fast and slow episodes; however, the model heating is larger by a factor of two. The evolution of Euro-Atlantic circulation regimes indicates a clear response due to the added heating, with a robust increase in the frequency of occurrence of the negative phase of the North Atlantic Oscillation (NAO?) after the heating crosses into the Pacific and a somewhat less robust increase in the positive phase of the NAO (NAO+) following Indian Ocean heating. In the Fast Cycle experiments, the model response is somewhat muted compared with the Slow Cycle experiments. The Scandinavian Blocking regime becomes more frequent prior to the NAO? regime. The two leading modes in the predictable component analysis of 300?hPa height (Z300), synoptic scale feedback (DZ300), and planetary wave diabatic heating in all experiments form an oscillatory pair with high statistical significance. The oscillatory pair represents the cyclic response to the particular MJO signal (Fast or Slow, Single, or Repeated Cycles) in each case. The period is about 64 days for the Slow Cycle and 36 days for the Fast Cycle, consistent with the imposed periods. The time series of one of the leading modes of Z300 is highly anti-correlated with the frequency of occurrence of the NAO– in the Repeated Cycle experiments. A clear cycle involving the Z300 and DZ300 leading modes is identified.  相似文献   
193.
珊瑚是记录海洋环境变化信息的载体之一,测定其U/Ca比值可重建海水温度或测定Th/U同位素比值可计算年龄重建海平面高度等.准确测定珊瑚中U、Th含量及同位素比值是提取所记载的海洋环境变化信息的前提,其难点在于高Ca基体分离和痕量U、Th富集纯化.基于此,本研究拟采用UTEVA树脂改进了一步富集分离珊瑚中U、Th的前处理...  相似文献   
194.
讨论了在地学、工程测量研究领域常见的随机漫步噪声,从理论上将经典布朗运动随机过程(随机漫步噪声)推广到分形布朗运动随机过程,并导出分形布朗运动随机过程的相关函数。  相似文献   
195.
本文在系统分析苏锡常地区地下水开采与地面沉降发展动态及相互关系的基础上,从“区域分解”的思想出发,将研究区按第四纪土层结构进行了合理分区,并分别在各亚区建立地面沉降量与地下水水位相关预测模型。实践表明,该模型符合现阶段苏锡常地区地面沉降研究现状,具有一定的实用价值。  相似文献   
196.
中国区域土地利用/覆被变化对陆地碳收支的影响   总被引:2,自引:0,他引:2  
准确估计土地利用/覆被变化(LUCC)对陆地生态系统碳收支的影响已成为当前全球变化和全球碳循环研究的重点内容。本文通过文献调研和数据的整合分析方法总结讨论了近年来中国区域LUCC时空特征及其对陆地碳收支影响,为合理评价中国区域陆地碳平衡以及确定未来研究发展方向提供参考。已有大量研究对近年来中国区域LUCC主要特征进行了探讨,并分别利用卫星遥感方法和IPCC清单法对中国区域陆地碳源汇影响进行了评估。结果表明,目前全国土地利用活动,特别是农林活动正对陆地生态系统碳收支产生了比较显著的积极作用,但基于以上两种方法的研究结论之间差异很大,反映出中国LUCC导致陆地碳收支变化的评估结果仍存在着较大的不确定性。通过分析认为,中国未来的研究工作应着重于发展和利用基于土地利用相互转化面积的计量方法,以提高对中国区域LUCC导致陆地碳收支变化评估的准确性。  相似文献   
197.
The object of this study is to test the assumption that cryogenic weathering (here understood as in‐situ disintegration of rock under cold‐climate conditions including ice as a weathering agent) preferentially breaks up quartz grains. We apply the results of laboratory tests to a Quaternary sediment record. The combination of silt production, relative quartz enrichment in the silt fraction, and quartz grain micromorphology is traced in a multi‐100‐kyr lake sediment archive as indicator data for cryogenic weathering. Constant cryogenic weathering conditions are inferred for at least the last 220 000 years from a lake sediment core of El'gygytgyn Crater, northeast Russia. This is the longest continuous terrestrial archive currently known for the continental Arctic. Quartz enrichment in the fines evolves from seasonal freeze–thaw weathering as demonstrated in laboratory testing where over 100 freeze and thaw cycles crack quartz grains preferentially over feldspar. Microscopic grain features demonstrate that freeze–thaw cycling probably disrupts quartz grains along mineral impurities such as bubble trails, gas–liquid inclusions, or mineralogical sub‐grain boundaries. Single‐grain micromorphology (e.g. angular outlines, sharp edges, microcracks, brittle surfaces) illustrates how quartz becomes fragmented due to cryogenic cracking of the grains. The single‐grain features stemming from the weathering dynamics are preserved even after a grain is transported off site (i.e. in mobile slope material, in seasonal river run‐off, into a lake basin) and may serve as first‐order proxy data for permafrost conditions in Quaternary records.  相似文献   
198.
In this study, the water balance-based Precipitation-Evapotranspiration-Runoff (PER) method combined with the land surface model Variable Infiltration Capacity (VIC) was used to estimate the spatiotemporal variations of terrestrial water storage (TWS) for two periods, 1982–2005 (baseline) and 2071–2100, under future climate scenarios A2 and B2 in the Yangtze River basin. The results show that the estimated TWS during the baseline period and under the two future climate scenarios have similar seasonal amplitudes of 60–70 mm. The higher values of TWS appear in June during the baseline period and under the B2 scenario, whereas the TWS under A2 shows two peaks in response to the related precipitation pattern. It also shows that the TWS is recharged from February to June during the baseline period, but it is replenished from March to June under the A2 and B2 scenarios. An analysis of the standard derivation of seasonal and interannual TWS time series under the three scenarios demonstrates that the seasonal TWS of the southeastern part of the Yangtze River basin varies remarkably and that the southeastern and central parts of the basin have higher variations in interannual TWS. With respect to the first mode of the Empirical Orthogonal Function (EOF), the inverse-phase change in seasonal TWS mainly appears across the Guizhou-Sichuan-Shaanxi belt, and the entire basin generally represents a synchronous change in interannual TWS. As a whole, the TWS under A2 presents a larger seasonal variation whereas that under B2 displays a greater interannual variation. These results imply that climate change could trigger severe disasters in the southeastern and central parts of the basin.  相似文献   
199.
200.
Littoral zones of lakes are important for carbon and nutrient recycling because of the accumulation and decomposition of organic matter (OM) coming from terrestrial and aquatic plants. Here, we aimed to study OM decomposition from the most abundant riparian trees (Nothofagus dombeyi and Myrceugenia exsucca), and an emergent macrophyte (Schoenoplectus californicus), in the littoral zone of an ultraoligotrophic North-Patagonian Andean lake. We analysed the initial 2-days leaching, and litter mass loss and litter nutrient changes after one year of decomposition in a litter-bag experiment. The three studied species had very slow decay rates (k < 0.005 day−1), and initial nutrient release by leaching was not related to differences in decomposition rates. However, differences in leaf traits (lignin content) were related to interspecific variation in decomposition rates. The highest decomposition rates were observed for the macrophyte S. californicus, the species with the lower lignin content, while the opposite was observed in the Myrtaceae M. exsucca. In the three studied species, nitrogen content increased during decomposition. Our results indicated that in the shore of ultra-oligotrophic lakes, litter remains for long periods with net nutrient immobilization, thus OM of the riparian vegetation represents a carbon and nutrient sink.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号