首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   3篇
  国内免费   37篇
地球物理   5篇
地质学   114篇
  2022年   1篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   7篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   6篇
  2003年   3篇
  2002年   7篇
  2001年   4篇
  2000年   1篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有119条查询结果,搜索用时 172 毫秒
31.
Abstract Corona textures, which developed in alternating layers in rocks in a supracrustal belt at Errabiddy, Western Australia, involved:
(a) The production of staurolite, cordierite and quartz or sapphirine between Kyanite and/or sillimanite and gedrite; and
(b) The production of cordierite between garnet and gedrite.
These textures are inconsistent with development along the same pressure–temperature path in the system FeO–MgO–Al2O3–SiO2–H2O, but can be accounted for if CaO, mainly in garnet, is taken into account. The sapphirine-bearing kyanite–gedrite textures are explained by lower a (SiO2) during their development. The assemblages indicate a consistent pressure–temperature ( P–T ) trajectory involving substantial uplift with only a slight decrease in temperature. The history of these rocks includes reheating of originally high-grade rocks that had cooled to a stable conductive geotherm, followed by substantial, essentially isothermal uplift. The tectonic environment for this was presumably the one responsible for emplacement of the high-grade terrain in the upper crust.  相似文献   
32.
The rare earth element patterns of the gneisses of Bastar and Bundelkhand are marked by LREE enrichment and HREE depletion with or without Eu anomaly. The spidergram patterns for the gneisses are characterized by marked enrichment in LILE with negative anomalies for Ba, P and Ti. The geochemical characteristics exhibited by the gneisses are generally interpreted as melts generated by partial melting of a subducting slab. The style of subduction was flat subduction, which was most common in the Archean. The rare earth patterns and the multi-element diagrams with marked enrichment in LILE and negative anomalies for Ba, P and Ti of the granitoids of both the cratons indicate interaction between slab derived melts and the mantle wedge. The subduction angle was high in the Proterozoic. Considering the age of emplacement of the gneisses and granitoids that differs by ∼ 1 Ga, it can be assumed that these are linked to two independent subduction events: one during Archaean (flat subduction) that generated the precursor melts for the gneisses and the other during the Proterozoic (high angle subduction) that produced the melts for the granitoids. The high values of Mg #, Ni, Cr, Sr and low values of SiO2 in the granitoids of Bastar and Bundelkhand cratons compared to the gneisses of both the cratons indicate melt-mantle interaction in the generation of the granitoids. The low values of Mg#, Ni, Cr, Sr and high values of SiO2 in the gneisses in turn overrules such melt-mantle interaction.  相似文献   
33.
A kilometre-scale shear zone is recognized in the Cambro–Ordovician schist of the Bossòst dome, a Variscan metamorphic and structural dome in the Axial Zone of the central Pyrenees. Non-coaxial deformation is recorded by rotated garnet and staurolite porphyroblasts following regional metamorphism M1, while coaxial conditions prevailed during later contact metamorphic M2 growth of andalusite and cordierite. Mineral compositions and bulk rock analyses show that garnet–staurolite–andalusite–cordierite assemblages are significantly enriched in Mg and Mn over the garnet–staurolite assemblage, which lacks sufficient Mg for cordierite to form. The garnet–staurolite assemblage preserves conditions during M1, estimated by AFM diagrams and PT pseudosections to be 5.5 kbar and 580 °C, respectively. Pseudosections also indicate that staurolite is not a stable phase in cordierite–andalusite assemblages of M2, suggesting polyphase metamorphism and decompression along a clockwise PT path for the staurolite–cordierite–andalusite assemblages. This concurs with proposed extensional tectonics along the regional shear zone. To cite this article: J.E. Mezger et al., C. R. Geoscience 336 (2004).  相似文献   
34.
This paper examines the spatial statistics of matrix minerals and complex patterned cordierite porphyroblasts in the low‐pressure, high‐temperature (low P/T) Tsukuba metamorphic rocks from central Japan, using a density correlation function. The cordierite‐producing reaction is sillimanite + biotite + quartz = K‐feldspar + cordierite + water. The density correlation function shows that quartz is distributed randomly. However, the density correlation functions of biotite, plagioclase and K‐feldspar show that their spatial distributions are clearly affected by the formation of cordierite porphyroblasts. These observations suggest that cordierite growth occurred through a selective growth mechanism: quartz adjacent to cordierite has a tendency to prevent the growth of cordierite, whereas other matrix minerals adjacent to cordierite have a tendency to enhance the growth of cordierite. The density correlation functions of complex patterned cordierite porphyroblasts show power‐law behaviour. A selective growth mechanism alone cannot explain the origin of the power‐law behaviour. Comparison of the morphology and fractal dimension of cordierite with two‐dimensional sections from a three‐dimensional diffusion‐limited aggregation (DLA) suggests that the formation of cordierite porphyroblasts can be modelled as a DLA process. DLA is the simple statistical model for the universal fractal pattern developed in a macroscopic diffusion field. Diffusion‐controlled growth interacting with a random field is essential to the formation of a DLA‐like pattern. The selective growth mechanism will provide a random noise for the growth of cordierite due to random distribution of quartz. Therefore, a selective growth mechanism coupled with diffusion‐controlled growth is proposed to explain the power‐law behaviour of the density correlation function of complex patterned cordierite. The results in this paper suggest that not only the growth kinetics but also the spatial distribution of matrix minerals affect the progress of the metamorphic reaction and pattern formation of metamorphic rocks.  相似文献   
35.
Granite-hosted,Nb-,Ta-,Sn-,U-,Th-,and Zr(Hf)-bearing mineralization from the Abu Rusheid shear zones occurs about 97 km southwest of the town of Marsa Alam,South Eastern Desert,Egypt.The SSE-trending brittle-ductile Abu Rusheid shear zones crosscut the peralkalic granitic gneisses and cataclastic to mylonitic rocks(mylonite,protomlyonite,and ultramylonite).The northern shear zone varies in width from 1 to 3 m with a strike length of >500 m,and the southern shear zone is 0.5 to 8 m wide and >1 km long.These shear zones locally host less altered lamprophyre and locally sheared granitic aplite-pegmatite dykes.The rare-metal minerals,identified from the peralkalic granitic gneisses and cataclastic to mylonitic rocks are associated with muscovite,chlorite,quartz,fluorite,pyrite,magnetite,and rare biotite that are restricted to the Abu Rusheid shear zones;these are columbite-tantalite and pyrochlore(var.betafite) in the northern shear zone and ferrocolumbite in the southern shear zone.Cassiterite occurs as inclusions in the columbite-tantalite minerals.U-and Th-minerals(uraninite,thorite,uranothorite,ishikawaite,and cheralite) and Hf-rich zircon coexist.Magmatic(?) zircon contains numerous inclusions of rutile,fluorite,U-Th and REE minerals,such as uranothorite,cheralite,monazite,and xenotime.Compositional variations in Ta/(Ta+Nb) and Mn/(Mn+Fe) in columbite range from 0.07-0.42 and 0.04-0.33,respectively,and Hf contents in zircon from 1.92-6.46 of the two mineralized shear zones reflect the extreme degree of magmatic fractionation.Four samples of peralkalic granitic gneisses and cataclastic to mylonitic rocks from the southern shear zone have very low TiO2(0.02 wt%-0.04 wt%),Sr [(15-20)×10-6],and Ba [(47-78)×10-6],with high Fe2O3T(0.94 wt%-1.99 wt%),CaO(0.14 wt%-1.16 wt%),alkalis(9.2 wt%-10.1 wt%),Rb [(369-805)×10-6],Zr [(1033-2261)×10-6],Nb [(371-913)×10-6],U [(51-108)×10-6],Th [(36-110)×10-6],Ta [(38-108)×10-6],Pb [(39-364)×10-6],Zn [(21-424)×10-6],Y [(8-304)×10-6],Hf [(29-157)×10-6],and ∑REE [(64-304)×10-6],especially HREE [(46-167)×10-6].Three samples from the northern shear zone also have very low TiO2(0.03 wt%),Sr [(11-16)×10-6],and Ba [(38-47)×10-6],with high Fe2O3T(1.97 wt%-2.91 wt%),CaO(0.49 wt%-1.01 wt%),alkalis(7.2 wt%-8.3 wt%),Rb [(932-978)×10-6],Zr [(1707-1953)×10-6],Nb [(853-981)×10-6],Ta [(100-112)×10-6],U [(120-752)×10-6],Th [(121-164)×10-6],Pb [(260-2198)×10-6],Zn [(483-1140)×10-6],Y [(8-304)×10-6],Hf [(67-106)×10-6],and ∑REE [(110-231)×10-6],especially HREE [(91-177)×10-6].The very high Rb/Sr(57.5-88.9),and low Zr/Hf(16.9-25.6),Nb/Ta(7.7-9.8),and Th/U(0.21-1.01) are consistent with very frac-tionated fluorine-bearing granitic rocks that were altered and sheared.The field evidence,textural relations,and compositions of the ore minerals suggest that the main mineralizing event was magmatic(629+/-5 Ma,CHIME monazite),with later hydrothermal alteration and local remobilization of the high-field-strength elements.  相似文献   
36.
Garnet-biotite gneisses, some of which contain sillimanite or hornblende, are widespread within the Otter Lake terrain, a portion of the Grenville Province of the Canadian Shield. The metamorphic grade is upper amphibolite to, locally, lower granulite facies. The atomic ratio Fe2+/(Fe2++ Fe3+) in biotite ranges from 0.79 to 0.89 (ferrous iron determinations in 10 highly pure separates), with a mean of 0.86. Mg and Fe2+ atoms occupy 67–78% of the octahedral sites, the remainder are occupied by Fe3+, Ti, and Al, and some are vacant. Mg/(Mg + Fe2+), denoted X, in the analysed samples ranges from 0.32 to 0.65. Garnet contains 1–24% grossular, 1–12% spessartine and X ranges from 0.07 to 0.34. Compositional variation in biotite and garnet is examined in relation to three mineral equilibria: (I) biotite + sillimanite + quartz = garnet + K-feldspar + H2O; (II) pyrope + annite = almandine + phlogopite; (III) anorthite = grossular + sillimanite + quartz. Measurements of X (biotite) and X (garnet) are used to construct an illustrative model for equilibrium (I) which relates the observed variation in X to a temperature range of 70°C or a range in H2O activity of 0.6; the latter interpretation is preferred. In sillimanite-free gneisses, the distribution of Mg and Fe2+ between garnet (low in Ca and Mn) and biotite is adequately described by a distribution coefficient (KD) of 4.1 (equilibrium II). The observed increase in the distribution coefficient with increasing Ca in garnet is ln KD= 1.3 + 2.5 × 10?2 [Ca] where [Ca] = 100 Ca/(Mg + Fe2++ Mn + Ca). The distribution coefficient is apparently unaffected by the presence of up to 12% spessartine in garnet. In several specimens of garnet-sillimanite-plagioclase gneiss, the Ca contents of garnet and of plagioclase increase in unison, as required by equilibrium (III). The mean pressure calculated from these data (n= 17) is 5.9 kbar, and the 95% confidence limits are ±0.5 kbar.  相似文献   
37.
In the Boi Massif of Western Timor the Mutis Complex, which is equivalent to the Lolotoi Complex of East Timor, is composed of two lithostratigraphical components: various basement schists and gneisses; and the dismembered remnants of an ophiolite. Cordierite-bearing pelitic schists and gneisses carry an early mineral assemblage of biotite + garnet + plagioclase + Al-silicate, but contain no prograde muscovite; sillimanite occurs in a textural mode which suggests that it replaced and pseudomorphed kyanite at an early stage and some specimens of pelitic schist contain tiny kyanite relics in plagioclase. Textural relations between, and mineral chemistries of, ferro-magnesian phases in these pelitic chists and gneisses suggest that two discontinuous reactions and additional continuous compositional changes have been overstepped, possibly with concomitant anatexis, as a result of decrease in Pload during high temperature metamorphism. The simplified reactions are: garnet and/or biotite + sillimanite + quartz + cordierite + hercynite + ilmenite + excess components. P-T conditions during the development of the early mineral assemblage in the pelitic gneisses are estimated to have been P + 10 kbar and T > 750°C, based upon the plagioclase-garnet-Al-silicate-quartz geobarometer and the garnet-biotite geothermometer. P-T conditions during the subsequent development of cordierite-bearing mineral assemblages in the pelitic gneisses are estimated to have been P + 5 kbar and T + 700°C with XH2O < 0.5, based upon the Fe content of cordierite occurring in the assemblage quartz + plagioclase + sillimanite + biotite + garnet + cordierite coexisting with melt. Final equilibration between some of the phases suggests that conditions dropped to P > 2.3 kbar and T > 600°C. A similar exhumation P-T path is suggested for the pelitic schists with early metamorphic conditions of P > 6.2 kbar and T > 745°C and subsequent development of cordierite under conditions in the range P = 3-4 kbar and T = 600-700°C. The tectonic implications of these P-T estimates are discussed and it is concluded that the P-T path followed by these rocks was caused by decompression during rifting and synmetamorphic ophiolite emplacement resulting from processes during the initiation and development of a convergent plate junction located in Southeast Asia during late Jurassic to Cretaceous time.  相似文献   
38.
As part of Central Asian Orogenic Belt (CAOB), the Central Tianshan zone plays a crucial role in the reconstruction of the tectonic evolution of the CAOB. Furthermore, it is bordered by the Tarim Craton to the south, and the comparable evolutionary history between them enables the Central Tianshan zone to provide essential information on the crustal evolution of the Tarim Craton. The eastern segment of the Central Tianshan tectonic zone is characterized by the presence of numerous Precambrian metamorphic rocks, among which the Xingxingxia Group is the most representative one. The granitoids gneisses, intruded into the Xingxingxia Group, consist of two major lithological assemblages: (1) biotite-monzonitic gneisses and (2) biotite-plagioclase gneisses. These metamorphosed granitoid rocks are characterized by enrichment in SiO2, Al2O3 and K2O and depletion in MgO and FeOT. The Rittmann index (σ) spreads between 1.44 and 2.21 and ACNK (Al2O3/(CaO + Na2O + K2O)) ranges from 1.03 to 1.08, indicating that these granitoid gneisses are high-K calc-alkaline and peraluminous. Trace element data indicate that the studied samples are enriched in LREE with moderate REE fractionated patterns ((La/Yb)N = 10.5–75.3). The concentrations of HREE of the garnet-bearing gneisses are significantly higher than those of garnet-free gneisses. The former show pronounced negative Eu anomalies (Eu/Eu* = 0.32–0.57), while the latter are characterized by negligible negative Eu anomalies to moderate positive Eu anomalies (Eu/Eu* = 0.80–1.35). In addition, the enrichment of LILE (Rb, Th, K, Pb) and depletion of HFSE (Ta, Nb, P, Ti) of the examined granitoid gneisses are similar to typical volcanic-arc granites. Zircons U–Pb dating on the biotite monzonitic gneiss yields a weighted mean 206Pb/238U age of 942.4 ± 5.1 Ma, suggesting their protoliths were formed in the early Neoproterozoic, which is compatible with the time of the assembly of supercontinent Rodinia. The zircons have a large εHf(t) variation from −5.6 to +3.2, suggesting that both old crust-derived magmas and mantle-derived juvenile materials contributed to the formation of their protoliths. Based on field observation, and petrological, geochemical and geochronological investigations, we infer that the granitoid gneisses from Xingxingxia were probably formed on a continental arc that resulted from the interaction of Australia and the Tarim Craton during the assembly of the Rodinia supercontinent, and that the Central Tianshan zone was a part of the Tarim Craton during that time. Besides, the Grenvillian orogenic events may have developed better in the Tarim Craton than previously expected.  相似文献   
39.
Sm‐Nd and Rb‐Sr isotopic data for Archaean gneisses from three localities within the eastern Yilgarn Block of Western Australia indicate that the gneisses define a precise Rb‐Sr whole rock isochron age of 2780 ± 60 Ma and an initial 87Sr/86Sr of 0.7007 ± 5. The Sm‐Nd isotopic data do not correspond to a single linear array, but form two coherent groups that are consistent with a c. 2800 Ma age of crust formation, with variable initial Nd. These results indicate that the gneiss protoliths existed as continental crust for a maximum period of only c. 100 Ma, and probably for a much shorter time, prior to the formation of the 2790 ±30 Ma greenstones.  相似文献   
40.
西秦岭造山带北缘古元古界变质杂岩中新识别出新元古代元龙花岗质片麻岩和新阳花岗质片麻岩。花岗质片麻岩中锆石Th/U比值较高,阴极发光图象显示锆石内部发育振荡环带,具岩浆成因特点。LA-ICP-MS锆石U-Pb同位素206Pb/238U加权平均年龄分别为914.7±7.6Ma(MSWD=4.8)、978.5±4.8Ma(MSWD=1.5)和935.5±3.1Ma(MSWD=1.3),表明花岗岩岩体形成于新元古代,反映了新元古代早期西秦岭北缘存在一次俯冲碰撞事件,与Rodinia超大陆的汇聚事件具有一致性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号