首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3340篇
  免费   667篇
  国内免费   1346篇
测绘学   85篇
大气科学   37篇
地球物理   479篇
地质学   3900篇
海洋学   427篇
天文学   16篇
综合类   138篇
自然地理   271篇
  2024年   20篇
  2023年   48篇
  2022年   122篇
  2021年   113篇
  2020年   159篇
  2019年   152篇
  2018年   157篇
  2017年   164篇
  2016年   171篇
  2015年   181篇
  2014年   200篇
  2013年   242篇
  2012年   271篇
  2011年   175篇
  2010年   162篇
  2009年   236篇
  2008年   198篇
  2007年   244篇
  2006年   238篇
  2005年   190篇
  2004年   225篇
  2003年   195篇
  2002年   176篇
  2001年   159篇
  2000年   169篇
  1999年   143篇
  1998年   127篇
  1997年   129篇
  1996年   105篇
  1995年   128篇
  1994年   68篇
  1993年   70篇
  1992年   55篇
  1991年   38篇
  1990年   23篇
  1989年   29篇
  1988年   18篇
  1987年   14篇
  1986年   10篇
  1985年   9篇
  1984年   4篇
  1983年   8篇
  1982年   5篇
  1981年   2篇
  1978年   1篇
排序方式: 共有5353条查询结果,搜索用时 15 毫秒
11.
杭州泗岭铝质A型花岗岩的发现及其构造意义   总被引:4,自引:0,他引:4       下载免费PDF全文
初步研究表明,以往被认为是典型的S型花岗岩或改造-重熔型花岗岩的泗岭岩体应为铝质A型花岗岩。该岩体高硅、碱、钾而明显贫钙、镁;高(K2O Na2O)/CaO值(平均16.79)和AKI指数(平均0.92);FeO*/MgO比值大(平均13.95),高于M型、S型和I型花岗岩,而与世界A型花岗岩平均值(13.4)相近;岩石为弱碱性、准铝-弱过铝质,富含稀土元素、HFSE元素,高Rb、F和Nb,反映其具A型花岗岩的成分特征。泗岭岩体氧同位素δ18O为 8‰~ 9‰,反映岩浆主要起源于下地壳。该岩体侵位于拉张的构造环境,是晚白垩世早期一次重要的构造-岩浆热事件,同时也反映了区域性孝丰—三门湾大断裂与学川—湖州大断裂在晚白垩世早期处于拉伸阶段。  相似文献   
12.
对阿尔金南缘构造带西段辉绿岩墙群的岩石学和地球化学的详细研究表明,该区辉绿岩墙群为拉斑系列岩石,其主量元素以中等TiO2(1.19%~1.59%)、高MgO(5.51%~7.88%)、贫K2O(0.04%~0.84%)和P2O5(0.10%~0.20%)、Na2OK2O为特征;高场强元素(HFSE)丰度特征显示其为E-MORB型或过渡型玄武岩质岩石;稀土元素总量相对较高,轻重稀土元素分馏不显著[(La/Yb)N=1.93~3.61,LREE/HREE=3.01~4.10],在球粒陨石标准化配分模式图上呈略富集型.结合玄武岩构造环境判别图解综合分析推测,它们可能形成于一种裂谷向MORB环境过渡的构造环境,即初始小洋盆构造环境.  相似文献   
13.
滇西南澜沧江结合带云县花岗岩体的岩石类型主要为黑云二长花岗岩,SiO2含量平均为68.57%,K2O/Na2O值平均为1.67,相对富钾,岩石属高钾钙碱性系列,岩石酸、碱度低于同类岩石平均值,而镁铁组分高于平均 值,显示岩石偏中性,与同碰撞构造环境形成的花岗岩特征类似.Al2O3含量较高,平均为13.66%,A/CNK平均为1.1,呈铝过饱和,CIPw计算结果均出现标准矿物刚玉分子(105).岩石总体上相对富集大离子亲石元素,亏损高场强元素.稀土元素总量较高,平均为240.75×10-6,轻稀土元素富集,重稀土元素亏损,(La/Yb)N为8.88~9.41,分异不是很大,Eu为中等负异常,銭u为0.52~0.57.经多种相关图解判别,岩石属S型花岗岩,其构造环境相当于大陆碰撞花岗岩类(CCG).锆石颗粒U-Pb测年结果显示,源岩的形成年龄最晚是晋宁期(778 Ma),岩体主体形成于华力西晚期一印支期.其中岩浆成因锆石样品的206Pb.238U和207Pb/235U年龄分别为49 Ma和61 Ma,反映在云县岩体中可能存在喜马拉雅期岩浆活动.  相似文献   
14.
15.
试论东海陆架盆地的基底构造演化和盆地形成机制   总被引:4,自引:0,他引:4  
本文主要根据东海陆架盆地和周边的地质、地球物理资料,分析盆地的基底岩性特征、结构特征。认为东海陆架盆地的基底除元古界片麻岩外,还分布有一定范围的中生界及古生界。基底构造特征是纵向上多层次,横向上不均一,南北有别,东西分带。构造演化上经历了张、合、压、扭等复杂过程。  相似文献   
16.
SeaMARC II side-scan images, bathymetry, and single-channel seismic reflection data along the southern Peru—northern Chile forearc area between 16° and 23° S reveal a complex region of morpho-structural, submarine drainage and depression patterns. In the subducting plate area, the NW—SE trending primary normal fault system represented by trench-paralleled scarps was incipiently formed as the Nazca Plate was bent in the outer edge and further intensified as the plate approached the trench. The NE—SW trending secondary normal fault system that consists of discontinuous and smaller faults, usually intersect the primary trench-paralleled fault system. Similar to the Nazca Plate, the overriding continental plate also shows two major NW—SE and NE—SW trending fault systems represented by fault scarps or narrow elongated depressions.The submarine drainage systems represented by a series of canyon and channel courses appear to be partly controlled by the faults and exhibit a pattern similar to the onshore drainage which flows into the central region of the coastal area. Two large depressions occurring along the middle—upper slope areas of the continental margin are recognized as collapse and slump that perhaps are a major result of increased slope gradient. The subsidence of the forearc area in the southern Peru—northern Chile Continental Margin is indicated by: a) drainage systems flowing into the central region, b) the slope collapse and slumps heading to the central region, c) the deepening of the trench and inclining of the lower slope terrace to the central region, and d) submerging of the upper-slope ridge and the Peru—Chile Coast Range off the Arica Bight area.The subsidence of the forearc area in the southern Perunorthern Chile margin is probably attributed to a subduction erosion which causes wearing away and removal of the rock and sedimentary masses of the overriding plate as the Nazca Plate subducts under the South American Plate.  相似文献   
17.
Understanding the development from syn-rift to spreading in the South China Sea (SCS) is important in elucidating the western Pacific's tectonic evolution because the SCS is a major tectonic constituent of the many marginal seas in the region. This paper describes research examining the transition from rifting to spreading along the northern margin of the SCS, made possible by the amalgamation of newly acquired and existing geophysical data. The northernmost SCS was surveyed as part of a joint Japan-China cooperative project (JCCP) in two phases in 1993 and 1994. The purpose of the investigation was to reveal seismic and magnetic characteristics of the transitional zone between continental crust and the abyssal basin. Compilation of marine gravity and geomagnetic data of the South China Sea clarify structural characteristics of its rifted continental and convergent margins, both past and present. Total and three component magnetic data clearly indicate the magnetic lineations of the oceanic basin and the magnetic characteristics of its varied margins. The analyses of magnetic, gravity and seismic data and other geophysical and geological information from the SCS led up to the following results: (1) N-S direction seafloor spreading started from early Eocene. There were at least four separate evolutional stages. Directions and rates of the spreading are fluctuating and unstable and spreading continued from 32 to 17 Ma. (2) The apparent difference in the present tectonism of the eastern and western parts of Continent Ocean Boundary (COB) implies that in the east of the continental breakup is governed by a strike slip faulting. (3) The seismic high velocity layer in the lower crust seems to be underplated beneath the stretched continental crust. (4) Magnetic anomaly of the continental margin area seems to be rooted in the uppermost sediment and upper part of lower crust based on the tertiary volcanism. (5) Magnetic quiet zone (MQZ) anomaly in the continental margin area coincides with COB. (6) The non-magnetic or very weakly magnetized layer is probably responsible for MQZ. One of the causes of demagnetization of the layer is due to hydrothermal alteration while high temperature mantle materials being underplated. Another explanation is that horizontal sequences of basalt each with flip-flop magnetization polarity cancel out to the resultant magnetic field on the surface. We are currently developing a synthetic database system containing datasets of seismicity, potential field data, crustal and thermal structures, and other geophysical data to facilitate the study of past, contemporary and future changes in the deep sea environment around Japan; i.e. trench, trough, subduction zones, marginal basins and island arcs. Several special characteristics are an object-oriented approach to the collection and multi-faceted studies of global data from a variety of sources.  相似文献   
18.
根据249个表层沉积物样品的Ca,Al,N,P,Mg,Fe,Mn,Ti和有机碳的测定数据,利用稳健RQ型主分量分析及Q型聚类分析方法,对珠江口外陆架表层沉积物进行了地球化学分类,并将该陆架区划分成陆源细碎屑沉积区、经叠加改造的残留泥砂质沉积区、生物碎屑沉积区以及高能环境下的石英砂质沉积区。结果表明了稳健统计方法相对于传统统计方法的优越性,以及采用稳健主分量的Q载荷进行聚类分析相对于用原始变量进行聚类分析的优越性。  相似文献   
19.
Two distinct series of slumps deform the upper part of the sedimentary sequence along the continental margin of the Levant. One series is found along the base of the continental slope, where it overlies the disrupted eastern edge of the Messinian evaporites. The second series of slumps transects the continental margin from the shelf break to the Levant Basin. It seemed that the two series were triggered by two unrelated, though contemporaneous, processes. The shore-parallel slumps were initiated by basinwards flow of the Messinian salt, that carried along the overlying Plio-Quaternary sediments. Seawater that percolated along the detachment faults dissolved the underlying salt to form distinctly disrupted structures. The slope-normal slumps are located on top of large canyons that cut into the pre-Messinian sedimentary rocks. A layer of salt is found in the canyons, and the Plio-Quaternary sediments were deposited on that layer. The slumps are bounded by large, NW-trending faults where post-Messinian faulted offset was measured. We presume that the flow of the salt in the canyons also drives the slope-normal slumps. Thus thin-skinned halokynetic processes generated the composite post-Tortonian structural patterns of the Levant margin. The Phoenician Structures are a prime example of the collapse of a distal continental margin due to the dissolution of a massive salt layer.  相似文献   
20.
Crustal Thinning of the Northern Continental Margin of the South China Sea   总被引:2,自引:0,他引:2  
Magnetic data suggest that the distribution of the oceanic crust in the northern South China Sea (SCS) may extend to about 21 °N and 118.5 °E. To examine the crustal features of the corresponding continent–ocean transition zone, we have studied the crustal structures of the northern continental margin of the SCS. We have also performed gravity modeling by using a simple four-layer crustal model to understand the geometry of the Moho surface and the crustal thicknesses beneath this transition zone. In general, we can distinguish the crustal structures of the study area into the continental crust, the thinned continental crust, and the oceanic crust. However, some volcanic intrusions or extrusions exist. Our results indicate the existence of oceanic crust in the northernmost SCS as observed by magnetic data. Accordingly, we have moved the continent–ocean boundary (COB) in the northeastern SCS from about 19 °N and 119.5 °E to 21 °N and 118.5 °E. Morphologically, the new COB is located along the base of the continental slope. The southeastward thinning of the continental crust in the study area is prominent. The average value of crustal thinning factor of the thinned continental crust zone is about 1.3–1.5. In the study region, the Moho depths generally vary from ca. 28 km to ca. 12 km and the crustal thicknesses vary from ca. 24 km to ca. 6 km; a regional maximum exists around the Dongsha Island. Our gravity modeling has shown that the oceanic crust in the northern SCS is slightly thicker than normal oceanic crust. This situation could be ascribed to the post-spreading volcanism or underplating in this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号