首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   745篇
  免费   238篇
  国内免费   80篇
测绘学   41篇
大气科学   6篇
地球物理   614篇
地质学   259篇
海洋学   114篇
天文学   1篇
综合类   17篇
自然地理   11篇
  2024年   5篇
  2023年   11篇
  2022年   28篇
  2021年   36篇
  2020年   54篇
  2019年   39篇
  2018年   41篇
  2017年   35篇
  2016年   29篇
  2015年   39篇
  2014年   62篇
  2013年   43篇
  2012年   73篇
  2011年   67篇
  2010年   56篇
  2009年   58篇
  2008年   44篇
  2007年   58篇
  2006年   47篇
  2005年   45篇
  2004年   36篇
  2003年   39篇
  2002年   23篇
  2001年   19篇
  2000年   18篇
  1999年   15篇
  1998年   11篇
  1997年   13篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有1063条查询结果,搜索用时 15 毫秒
101.
针对钢筋混凝土梁与钢管混凝土柱的穿筋连接形式,研究了钢管开穿筋小孔及加固对钢管混凝土柱抗震性能的影响。对于未开孔、开孔和开孔并加固三种情况,进行了3个直径为610 mm的足尺钢管混凝土柱试件的低周反复荷载试验。试验结果表明:未开孔试件在距根部100 mm处发生钢管屈曲破坏;开孔试件的破坏主要是开孔处屈曲撕裂,开孔对钢管混凝土柱初期刚度和峰值承载力影响不大,但在峰值承载力后受孔边撕裂破坏影响,开孔试件的刚度和强度退化较快、延性和耗能能力降低;开孔并加固试件的破坏位置上移至加固段上部约90 mm处,与未开孔试件表现出相似的抗震性能。  相似文献   
102.
高轴压比钢管混凝土墩柱的试验结果对钢管混凝土拱肋具有较大的借鉴意义。为明确大跨度钢管混凝土拱桥的抗震性能指标,研究了高轴比钢管混凝土构件的破坏过程及延性性能。以弯矩作为性能指标将高轴压比钢管混凝土构件的试验破坏过程分为轻微损伤、有限损伤与严重损伤3个阶段,结合钢管混凝土截面性能状态的数值分析,探讨了高轴压比钢管混凝土构件的破坏机理。结果表明:高轴压比钢管混凝土构件具有一定的可用延性;提出了以计算等效屈服弯矩作为抗震性能指标,适当利用延性和实现钢管混凝土拱桥的有限损伤抗震设计,并给出了与有限损伤相关的截面性能状态及参数。研究成果弥补了规范在此方面的不足,可供高烈度地震区大跨度钢管混凝土拱桥抗震设计时参考。  相似文献   
103.
Reinforced concrete (RC) precast shear walls are extensively applied in practical engineering, owing to their fast construction speed. However, because of the transport conditions, RC precast shear walls have to be separated into small wall segments during the factory prefabrication procedure before being assembled on site. Typically, wet-type jointing methods are adopted to link the segments, which is time-consuming and results in unreliable post-pouring area strength. To overcome this problem, the novel scheme of the steel shear key (SSK) featuring steel shear panels and combined fillet and plug welding is proposed. Three RC precast shear wall specimens with different linking strength, termed as weakened SSK wall, standard SSK wall, and strengthened SSK wall, respectively, and an integrated shear wall specimen were designed. Quasi-static cyclic loading was applied to investigate the specimens' dynamic properties. The test results suggest the prefabricated wall segments equipped with SSKs showed reliable stiffness and bearing capacity and were improved in energy dissipation ability, compared with conventional shear walls. As the shear stiffness and number of equipped SSKs increased, the specimens exhibited higher strength, but their ductility and energy dissipation were slightly decreased. Most importantly, the standard SSK wall specimen could achieve satisfactory bearing capacity and deformability and is thus recommended for precast building structures. Finite element method (FEM) models were established to validate the test results, and parametric study analysis was conducted based on the coupling ratio of the SSK walls. Finally, an appropriate coupling ratio range is recommended for practical engineering applications.  相似文献   
104.
杨洪渭  戎贤    张健新   《世界地震工程》2019,35(4):068-73
通过对2个新型装配式混凝土框架节点和1个现浇混凝土框架节点进行拟静力试验研究,对比分析装配式混凝土框架节点破坏特征、滞回曲线、骨架曲线、刚度退化和耗能能力等指标。研究结果表明:新型装配式混凝土框架节点比普通现浇混凝土框架节点具有较好的滞回性能,较高的耗能能力以及较缓的刚度退化。在满足梁筋锚固长度要求的前提下,预制梁内钢端头长度增加使框架节点抗震性能稍有提高。装配部分后浇混凝土可以提高框架节点的承载能力和刚度。采用ABAQUS有限元软件对节点进行数值模拟,发现模拟结果与试验结果吻合较好。  相似文献   
105.
王玲玲  李国强 《地震学刊》2013,(6):637-643,650
介绍了火灾下轴压钢柱的破坏准则。利用数值分析的方法,根据不同的破坏准则计算火灾下轴压钢柱的临界温度。火灾下钢材的力学性能分别参照EC3和CECS选取。通过对临界温度计算结果的对比分析,发现:①2个变形准则给出的结果基本相同,但以变形准则为判断依据往往会高估构件的临界温度;②应用变形准则需具备一定条件,即火灾下构件的破坏形式为整体失稳或截面强度破坏,若构件发生局部屈曲,变形准则不适用;③同一破坏准则下,火灾下钢材性能分别按照EC3和CECS选取,临界温度计算结果相差超过200℃。最后,给出临界温度设计曲线的上、下限,以方便工程应用。  相似文献   
106.
The current approach for seismic retrofit of deficient bridge columns in California involves extensive use of steel jacketing. In this paper, the influence of steel jacketing on the lateral response of circular bridge columns is studied; particularly, the enhancement of the ultimate compressive strain of concrete, the increase in curvature ductility capacity and the increase in lateral stiffness are investigated. The current steel jacket thickness used in California is shown to enhance the ultimate compressive strain of concrete by 4–9 times the spalling strain of unconfined concrete. For larger steel jacket thickness, the ultimate limit state of steel-jacketed columns may be governed by the low-cycle fatigue fracture of the longitudinal reinforcement instead of the ultimate compressive strain of concrete. Steel jacketing is also expected to increase significantly the lateral stiffness of columns if full-height steel jackets are used. The increase in lateral stiffness of flexural columns (3⩽L/D⩽9) is estimated to be 35–60 per cent using current jacket thickness. Inelastic dynamic analyses of steel-jacketed columns using ground motions recorded during the 1989 Loma Prieta earthquake indicated that the current steel jacket thickness provides adequate protection against the damage potential of the ground motions with comparable spectral acceleration as that specified in current design spectra, and the damage sustained by the steel-jacketed column is likely to be repairable.  相似文献   
107.
Tension-Only Concentrically Braced Frames (TOCBF) exhibit deteriorating pinched hysteretic behaviour during strong earthquakes. Slender braces transit between an elastic buckling state, a restraightening state, in which they carry almost no load, an elastic tensile loading state as they are suddenly taut and, finally, a tensile yielding state. It has long been suspected that the sudden increase in tensile forces in the braces of TOCBSF creates detrimental impact loading on the connections and other structural elements. No experimental evidence, however, has been provided so far to confirm, or to quantify, this impact phenomenon. This paper addresses this issue through shake table tests of half scale, two-storey, TOCBF models. By normalizing the hysteresis loops of braces obtained from shake table tests to the yield strength of steel obtained from quasi-static tests, the increase in tensile forces in the braces was obtained. Results of dynamic tensile tests on steel coupons under similar strain rates as observed during the shake table tests showed that this increase in tensile forces is not the result of impact, but is rather caused by a yield strength increase of the steel under high strain rate. A procedure is proposed to estimate and account for this increase in tensile forces in the braces at the design stage.  相似文献   
108.
Inelastic deformation capacity of links is a factor that significantly influences design of steel eccentrically braced frames (EBFs). The link rotation angle is used to describe inelastic link deformation. The link rotation angle is generally calculated by making use of design story drifts that in turn are calculated by modifying the elastic displacements by a displacement amplification factor. This paper presents a numerical study undertaken to evaluate the displacement amplification factor given in ASCE7‐10 for EBFs and the rigid‐plastic mechanism used for calculating link rotation angles. A total of 72 EBFs were designed by considering the number of stories, the bay width, the link length to bay width ratio, and the seismic hazard level as the prime variables. All structures were analyzed using elastic and inelastic time history analyses. The results indicated that the displacement amplification factor given in ASCE7‐10 provides unconservative estimates of the story drifts. On the other hand, the rigid‐plastic mechanism provides conservative estimates of link rotations. Based on the results of the numerical study, a new set of displacement amplification factors that vary along the height of the structure and modifications to the rigid‐plastic mechanism were developed. In light of the proposed modifications, the EBFs were redesigned and analyzed using inelastic time history analysis. The results indicated that the proposed modifications provide improvements for the displacement amplification factor and link rotation angle calculation procedures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
109.
Previous research has shown that self‐centering steel plate shear walls (SC‐SPSWs) are capable of achieving enhanced seismic performance at multiple hazard levels, including recentering following design‐level earthquakes. When modeling SC‐SPSWs numerically, these studies considered an idealized tension‐only steel plate shear wall (SPSW) web plate behavior. Research has shown that web plate behavior is more complex than predicted by the idealized model, and web plates can provide more strength, stiffness, and energy dissipation than predicted by the idealized model. The idealized model of web plate behavior is used widely in SPSW numerical models where the moment‐resisting boundary frame provides supplemental hysteretic damping and stiffness; however, in SC‐SPSWs, where the post‐tensioned boundary frame is designed to remain elastic during an earthquake, accounting for the more complex web plate behavior can have a significant impact on seismic performance estimates from numerical simulation. This paper presents different methods for modeling SC‐SPSWs. Responses from these models are compared with experimental results. A simple modification of the tension‐only model, referred to as the tension‐compression strip model, is shown to provide a reasonable approximation of SC‐SPSW behavior. Results from nonlinear response history analyses of SC‐SPSWs with the tension‐only and tension‐compression web plate models are compared to assess how the approximation of web plate behavior affects SC‐SPSW seismic performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
110.
Dynamic finite element analyses of a four‐story steel building frame modeled as a fine mesh of solid elements are performed using E‐Simulator, which is a parallel finite element analysis software package for precisely simulating collapse behaviors of civil and building structures. E‐Simulator is under development at the National Research Institute for Earth Science and Disaster Prevention (NIED), Japan. A full‐scale shake‐table test for a four‐story frame was conducted using E‐Defense at NIED, which is the largest shaking table in the world. A mesh of the entire structure of a four‐story frame with approximately 19 million degrees of freedom is constructed using solid elements. The density of the mesh is determined by referring to the results of elastic–plastic buckling analyses of a column of the frame using meshes of different densities. Therefore, the analysis model of the frame is well verified. Seismic response analyses under 60, 100, and 115% excitations of the JR Takatori record of the 1995 Hyogoken‐Nanbu earthquake are performed. Note that the simulation does not reproduce the collapse under the 100% excitation of the Takatori record in the E‐Defense test. Therefore, simulations for the 115% case are also performed. The results obtained by E‐Simulator are compared with those obtained by the E‐Defense full‐scale test in order to validate the results obtained by E‐Simulator. The shear forces and interstory drift angles of the first story obtained by the simulation and the test are in good agreement. Both the response of the entire frame and the local deformation as a result of elastic–plastic buckling are simulated simultaneously using E‐Simulator. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号