首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   949篇
  免费   283篇
  国内免费   536篇
测绘学   37篇
大气科学   143篇
地球物理   284篇
地质学   1044篇
海洋学   102篇
天文学   21篇
综合类   54篇
自然地理   83篇
  2024年   4篇
  2023年   14篇
  2022年   34篇
  2021年   31篇
  2020年   40篇
  2019年   58篇
  2018年   53篇
  2017年   41篇
  2016年   77篇
  2015年   63篇
  2014年   66篇
  2013年   91篇
  2012年   95篇
  2011年   92篇
  2010年   75篇
  2009年   93篇
  2008年   83篇
  2007年   91篇
  2006年   96篇
  2005年   85篇
  2004年   98篇
  2003年   68篇
  2002年   57篇
  2001年   42篇
  2000年   39篇
  1999年   33篇
  1998年   26篇
  1997年   31篇
  1996年   17篇
  1995年   11篇
  1994年   17篇
  1993年   13篇
  1992年   7篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
排序方式: 共有1768条查询结果,搜索用时 312 毫秒
231.
Steel-concrete composite structures that share the advantages of both steel structure and concrete structure have been developed rapidly and used widely. It has been a popular structure in high-rise buildings in recent years. Although more and more composite structures have been used in earthquake area, only a few literatures about fragility analysis of this type of structure are available. In this paper, a fragility analysis method based on performance is proposed, in which both the uncertainty due to vari...  相似文献   
232.
在现场试验的基础上,利用FLAC3D建立数值模拟模型,分别改变复合地基的褥垫层、持力层和桩体材料的模量,计算采用不同模量时复合地基的沉降以及桩土的应力,分析模量变化对复合地基承载力和沉降的影响规律。结果表明,褥垫层的材料和模量影响到桩间土承载力的发挥,褥垫层宜采用级配砂石,模量取值范围为20~50MPa。持力层模量增大可以提高复合地基承载力减小沉降,因此水泥土搅拌桩的桩端要进入到具有一定硬度的土层中,除软弱土外,其他土层做持力层其强度对复合地基承载力和沉降的影响不大。在一定范围内增大桩模量可以有效提高复合地基承载力减小沉降,采用水泥土搅拌桩加固软土地基时,桩的模量不要过大,建议取值范围为200~400MPa。  相似文献   
233.
本文从长短桩复合地基各组成部分的功能角度,阐述了长桩、短桩、褥垫层的作用机理,提出长短桩复合地基概念设计应遵循的设计原则。应用概念设计思想,建立了长短桩复合地基的五种典型工程应用模式,并在各典型模式的分析说明中,提出设计与施工参数的选用建议。通过在北京某工程的实际应用,显示长短桩复合地基的典型工程应用模式具有较好的实用性。  相似文献   
234.
The troctolites and olivine‐gabbros from the Dive 6 K‐1147 represent the most primitive gabbroic rocks collected at the Godzilla Megamullion, a giant oceanic core complex formed at an extinct spreading segment of the Parece Vela back‐arc basin (Philippine Sea). Previous investigations have shown that these rocks have textural and major elements mineral compositions consistent with a formation through multistage interaction between mantle‐derived melts and a pre‐existing ultramafic matrix. New investigations on trace element mineral compositions basically agree with this hypothesis. Clinopyroxenes and plagioclase have incompatible element signatures similar to that of typical‐MORB. However, the clinopyroxenes show very high Cr contents (similar to those of mantle clinopyroxene) and rim having sharply higher Zr/REE ratios with respect to the core. These features are in contrast with an evolution constrained by fractional crystallization processes, and suggest that the clinopyroxene compositions are controlled by melt‐rock interaction processes. The plagioclase anorthite versus clinopyroxene Mg#[Mg/(Mg + FeTot)] correlation of the Dive 6 K‐1147 rocks shows a trend much steeper than those depicted by other oceanic gabbroic sections. Using a thermodynamic model, we show that this trend is reproducible by fractionation of melts assimilating 1 g of mantle peridotite per 1 °C of cooling. This model predicts the early crystallization of high Mg# clinopyroxene, consistent with our petrological observation. The melt‐peridotite interaction process produces Na‐rich melts causing the crystallization of plagioclase with low anorthite component, typically characterizing the evolved gabbros from Godzilla Megamullion.  相似文献   
235.
The Chilas Complex is a major lower crustal component of the Cretaceous Kohistan island arc and one of the largest exposed slices of arc magma chamber in the world. Covering more than 8000 km2, it reaches a current tectonic width of around 40 km. It was emplaced at 85 Ma during rifting of the arc soon after the collision of the arc with the Karakoram plate. Over 85% of the Complex comprises homogeneous, olivine‐free gabbronorite and subordinate orthopyroxene–quartz diorite association (MGNA), which contains bodies of up to 30 km2 of ultramafic–mafic–anorthositic association (UMAA) rocks. Primary cumulate textures, igneous layering, and sedimentary structures are well preserved in layered parts of the UMAA in spite of pervasive granulite facies metamorphism. Mineral analyses show that the UMAA is characterized by more magnesian and more aluminous pyroxene and more calcic plagioclase than those in the MGNA. High modal abundances of orthopyroxene, magnetite and ilmenite (in MGNA), general Mg–Fe–Al spatial variations, and an MFA plot of whole‐rock analyses suggest a calc‐alkaline origin for the Complex. Projection of the pyroxene compositions on the Wo–En–Fs face is akin to those of pyroxenes from island arcs gabbros. The presence of highly calcic plagioclase and hornblende in UMAA is indicative of hydrous parental arc magma. The complex may be a product of two‐stage partial melting of a rising mantle diaper. The MGNA rocks represent the earlier phase melting, whereas the UMAA magma resulted from the melting of the same source depleted by the extraction of the earlier melt phase. Some of the massive peridotites in the UMAA may either be cumulates or represent metasomatized and remobilized upper mantle. The Chilas Complex shows similarities with many other (supra)subduction‐related mafic–ultramafic complexes worldwide.  相似文献   
236.
Yasuhiko Ohara 《Island Arc》2016,25(3):193-208
The Godzilla Megamullion is the largest known oceanic core complex (OCC) on the Earth, located in the Parece Vela Basin in the Philippine Sea. In this article, the history of Godzilla Megamullion study is reviewed for the first time, dividing it into three major phases: (i) the early studies done before Japan's extended continental shelf survey program; (ii) the studies during Japan's extended continental shelf survey program that discovered the OCC; and (iii) the studies by the post‐discovery cruises. The early studies included an interpretation of US nautical chart of the southwestern Pacific and the site surveys for Deep Sea Drilling Project cruises (DSDP Legs 6, 31 and 59). The early studies recognized the presence of the Parece Vela Rift, the extinct spreading axis of the Parece Vela Basin, and established the currently accepted model that the Philippine Sea evolved with eastward progression of backarc spreading and arc migration. The modern understanding of the Parece Vela Basin comes from Japan's extended continental shelf survey program. The program revealed the ultramafic petrology as well as a two‐stage evolution model of the basin. Following these results, the discovery of the Godzilla Megamullion was made in 2001. The studies by the post‐discovery cruises further revealed important characteristics of the OCC, such as the presence of abundant plagioclase‐bearing peridotite and the systematic temporal changes in both deformation microstructures and composition of plagioclase and amphibole in gabbroic mylonites and ultramylonites. Zircon U–Pb ages of gabboric and leucocratic rocks indicate that the terminal phase of Parece Vela Basin spreading was with a significant decline in spreading rate and asymmetry accompanying formation of the Godzilla Megamullion. The estimated denudation rate of the OCC was approximately 2.5 cm/yr; significantly slower than the previous estimate based on poorly constrained magnetic data.  相似文献   
237.
The clustering of fracture orientations is important for tectonic studies and for geotechnical engineering. In this study, a real‐coded genetic algorithm was adopted to fitting a mixed Bingham distribution to orientation data by maximizing the log‐likelihood function of the distribution. The maximization is a difficult problem, because the function has multimodality and singularity. It was found that the algorithm was effective for this problem. Given the orientations of dilational fractures, the present method determines not only the stress axes and stress ratio of each of the fracture groups but also the maximum non‐dimensionalized fluid pressure at the time of their formation. In addition, the software calculates the 95 % error ellipses of the concentration axes. The present method found that the orientations of ore veins of the Akenobe Mine, SW Japan, should be partitioned into three clusters. It is shown that two of the groups had distinctive Zn and Sn contents, and that the ore fluids had overpressures only slightly greater than the minimum principal stress at the time of the deposition of Zn‐ and Sn‐rich veins.  相似文献   
238.
Ian Metcalfe 《Island Arc》2016,25(2):126-136
Limestones exposed north of Raub, Pahang, Malaysia, and sandwiched between the Bentong‐Raub Suture Zone and the westernmost margin of the Sukhothai Arc terrane, yield a late Dienerian (late Induan) conodont fauna. The co‐occurrence of Neospathodus dieneri Sweet (morphotypes 1, 2 and 3) and Neospathodus pakistanensis Sweet represents the Neospathodus dieneri morphotype 3 sub‐zone of the Neospathodus dieneri Zone. The sampled limestones are interpreted as the northwards extension of the Jerus Limestone which crops out near Cheroh and Jerus villages, significantly extending the known outcrop of the Jerus Limestone northwards. The Jerus Limestone is interpreted as hemipelagic and formed in a foredeep or forearc setting on top of the accretionary complex formed by eastwards subduction of the Palaeo‐Tethys during the Lower to Middle Triassic.  相似文献   
239.
Recent field prospecting in the Cretaceous sequences of the lower Narmada valley has led to the discovery of three isolated archosaur teeth from the upper part of marine Cretaceous rocks of the Bagh Group. The specimens were recovered by surface prospecting from an oyster‐bearing green sandstone bed occurring at the top of the Coralline Limestone (Coniacian) from a site near Phutibawri village, Dhar District, Madhya Pradesh, India. Of the three teeth recovered from this horizon, two are identified with abelisaurid dinosaurs and the third one with an indeterminate crocodile. The abelisaurid teeth conform to the premaxillary and maxillary tooth morphology of Majungasaurus and Indosuchus. Earlier reports of abelisaurid dinosaurs from India are from the Upper Cretaceous (Maastrichtian) Lameta Group of Jabalpur, Pisdura (Central India) and Balasinor (Western India) and Upper Cretaceous (Late Maastrichtian) Kallamedu Formation (South India). As no associated age diagnostic fossils are found, the specimens described here are considered to represent pre‐Late to Late Maastrichtian age based on the known ages of the underlying and overlying formations. The new finds, therefore, document stratigraphically the oldest occurrence of abelisaurid dinosaurs known from the Indian subcontinent.  相似文献   
240.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号