首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   644篇
  免费   103篇
  国内免费   242篇
测绘学   15篇
大气科学   8篇
地球物理   115篇
地质学   699篇
海洋学   64篇
天文学   27篇
综合类   20篇
自然地理   41篇
  2024年   1篇
  2023年   13篇
  2022年   22篇
  2021年   28篇
  2020年   30篇
  2019年   35篇
  2018年   20篇
  2017年   23篇
  2016年   26篇
  2015年   19篇
  2014年   32篇
  2013年   51篇
  2012年   40篇
  2011年   36篇
  2010年   28篇
  2009年   39篇
  2008年   42篇
  2007年   47篇
  2006年   46篇
  2005年   29篇
  2004年   38篇
  2003年   33篇
  2002年   34篇
  2001年   35篇
  2000年   33篇
  1999年   31篇
  1998年   33篇
  1997年   31篇
  1996年   22篇
  1995年   19篇
  1994年   20篇
  1993年   11篇
  1992年   14篇
  1991年   6篇
  1990年   8篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有989条查询结果,搜索用时 750 毫秒
51.
On Continent-Continent Point-Collision and Ultrahigh-Pressure Metamorphism   总被引:4,自引:0,他引:4  
Up to now it is known that almost all ultrahigh-pressure (UHP) metamorphism of non-impact origin occurred in continent-continent collisional orogenic belt, as has been evidenced by many outcrops in the eastern hemisphere. UHP metamorphic rocks are represented by coesite- and diamond-bearing eclogites and eclogite facies metamorphic rocks formed at 650-800℃ and 2.6-3.5 GPa, and most of the protoliths of UHP rocks are volcanic-sedimentary sequences of continental crust. From these it may be deduced that deep subduction of continental crust may have occurred. However, UHP rocks are exposed on the surface or occur near the surface now, which implies that they have been exhumed from great depths. The mechanism of deep subduction of continental crust and subsequent exhumation has been a hot topic of the research on continental dynamics, but there are divergent views. The focus of the dispute is how deep continental crust is subducted so that UHP rocks can be formed and what mechanism causes it to be subducte  相似文献   
52.
中国西北大陆碰撞带的深部特征及其动力学意义   总被引:21,自引:7,他引:21       下载免费PDF全文
以中国大陆西北地区地震层析成像的结果为基础,通过分析大陆块体内部岩石层和软流层的深部形态,提出西部造山带与相邻块体之间几种可能的碰撞类型:天山与塔里木之间存在地块的嵌入拼合、俯冲、岩石层拆离下沉以及层间插入等多种构造样式;青藏高原与北部地质单元之间存在十分清晰的深部边界,反映出上地幔物质向北扩展的痕迹;推测青藏高原的岩石层在向北运动的过程中由于受到塔里木刚性块体的阻滞发生弯曲甚至折断,但是祁连山以北较浅的软流层相当于一个开放边界,使高原的上地幔物质得以进一步向北迁移.大陆碰撞不仅造成中国西部造山带岩石层结构的变动,而且导致软流层中一部分熔融的岩浆体沿着碰撞边界上涌到岩石层底部,它们对青藏高原以及西部造山带的形成演化起到重要的作用.  相似文献   
53.
Tectonics of Precambrian basement of the Tarim craton   总被引:4,自引:0,他引:4  
The Altyn Tagh Mountain is the main area where the Precambrian basements of Tarim craton are exposed. There are two ophiolitic belts in Altyn Tagh: one belt is exposed in the northern margin of Altyn Tagh whose formation age is about (829±60) Ma, the other is situated along the southern margin of Altyn Tagh and has a formation age of about (1449±270) Ma. This paper proposes a simple tectonic model for the Precambrian basement of Tarim craton established from ophiolites in Altyn Tagh area. The south Tarim block had amalgamated with Qaidam block during about 1400-1500 Ma along the present Altyn fault, while the south Tarim-Qaidam united block was still separated from the north Tarim block by an ocean. The united block of south Tarim and Qaidam collided with north Tarim block along the zone of high positive anomaly of central Tarim, Hongliugou and Lapeiquan in about 800 Ma. So since the Sinian (beginning at 800 Ma) there has been an integrated basement for Tarim craton.  相似文献   
54.
山东南墅地区孔兹岩系变质矿物的成因及演化   总被引:3,自引:0,他引:3  
南墅地区孔兹岩系的变质矿物具有多成因、多世代的特征 ,其经历三阶段五幕的变质作用 ,形成了以Sil+Gt +Cord +Bi +Kf +Pl+Q为代表的共生矿物组合。通过对主要变质矿物成因及演化特征的分析 ,结合温压计估算 ,确定该区孔兹岩系峰期变质作用温度为 70 0~ 75 0℃ ,压力为 0 .6~0 .7GPa ,变质程度达角闪麻粒岩相。确立 pTt轨迹具顺时针演化特点 ,反映一种陆 -陆碰撞造山带式构造演化模式。  相似文献   
55.
鲁东造山带榴辉岩变质作用特征及其动力学机制   总被引:4,自引:1,他引:3  
岩相学研究表明,广泛发育鲁东造山逞中的榴辉岩可以划分为四种类型:第一类为含柯石英及其假象榴辉岩;么二类为含蓝晶石 、黝帘石及多硅白云母等榴辉岩;第三类为石榴石-绿辉石-石英组合榴辉岩;第四类为(角闪石)石榴石-辉及有关岩石(非典型“榴辉岩”)。这四类榴辉岩峰期前进变质矿物共生组合及P-T条件估算结果均显示它们应属于高温与超高压变质作用产物,其变质作用PTt轨迹表现为顺时针演化趋势,反映出板块俯冲碰  相似文献   
56.
What Happened in the Trans-North China Orogen in the Period 2560-1850 Ma?   总被引:5,自引:0,他引:5  
The Trans-North China Orogen (TNCO) was a Paleoproterozic continent-continent collisional belt along which the Eastern and Western Blocks amalgamated to form a coherent North China Craton (NCC). Recent geological, structural, geochemical and isotopic data show that the orogen was a continental margin or Japan-type arc along the western margin of the Eastern Block, which was separated from the Western Block by an old ocean, with eastward-directed subduction of the oceanic lithosphere beneath the western margin of the Eastern Block. At 2550-2520 Ma, the deep subduction caused partial melting of the medium-lower crust, producing copious granitoid magma that was intruded into the upper levels of the crust to form granitoid plutons in the low- to medium-grade granite-greeustone terranes. At 2530-2520 Ma, subduction of the oceanic lithosphere caused partial melting of the mantle wedge, which led to underplating of mafic magma in the lower crust and widespread mafic and minor felsic volcanism in the arc, forming part of the greenstone assemblages. Extension driven by widespread mafic to felsic volcanism led to the development of back-arc and/or intra-arc basins in the orogen. At 2520-2475 Ma, the subduction caused further partial melting of the lower crust to form large amounts of tonalitic-trondhjemitic-granodioritic (TTG) magmatism. At this time following further extension of back-arc basins, episodic granitoid magmatism occurred, resulting in the emplacement of 2360 Ma, -2250 Ma 2110-21760 Ma and -2050 Ma granites in the orogen. Contemporary volcano-sedimentary rocks developed in the back-arc or intra-are basins. At 2150-1920 Ma, the orogen underwent several extensional events, possibly due to subduction of an oceanic ridge, leading to emplacement of mafic dykes that were subsequently metamorphosed to amphibolites and medium- to high-pressure mafic granulites. At 1880-1820 Ma, the ocean between the Eastern and Western Blocks was completely consumed by subduction, and the dosing of the ocean led to the continent-arc-continent collision, which caused large-scale thrusting and isoclinal folds and transported some of the rocks into the lower crustal levels or upper mantle to form granulites or eclogites. Peak metamorphism was followed by exhumation/uplift, resulting in widespread development of asymmetric folds and symplectic textures in the rocks.  相似文献   
57.
58.
Influence of surface roughness of the Teflon plates on kinetics of the bubble attachment was studied. Phenomena occurring during collisions of the air bubble, rising in clean water, with Teflon plates, differing only in their surface roughness, were recorded and analysed using a high-speed camera. Variations of the local velocity of the bubble during the collisions and the time of the bubble attachment were determined. It was found that the Teflon surface roughness was the parameter of a crucial importance for the attachment time of the colliding bubble. Depending on degree of the surface roughness the time of the attachment varied by over order of magnitude (from 3 to over 80 ms). In the case the Teflon surfaces having roughness below 1 μm there were recorded four to five “approach–bounce” cycles prior to the bubble attachment. Moreover, after the first collision the rapid pulsations of the bubble shape (within fraction of millisecond) were recorded. For surfaces of roughness ca. 50 μm and larger the attachment always occurred during the first collision—there was no bouncing observed and the time of the attachment was below 3 ms. It was documented that presence of a micro-bubble at the surface facilitated attachment of the colliding bubble.  相似文献   
59.
The Zagros fold-and-thrust belt of SW-Iran is among the youngest continental collision zones on Earth. Collision is thought to have occurred in the late Oligocene–early Miocene, followed by continental shortening. The High Zagros Belt (HZB) presents a Neogene imbricate structure that has affected the thick sedimentary cover of the former Arabian continental passive margin. The HZB of interior Fars marks the innermost part of SE-Zagros, trending NW–SE, that is characterised by higher elevation, lack of seismicity, and no evident active crustal shortening with respect to the outer (SW) parts. This study examines the brittle structures that developed during the mountain building process to decipher the history of polyphase deformation and variations in compressive tectonic fields since the onset of collision. Analytic inversion techniques enabled us to determine and separate different brittle tectonic regimes in terms of stress tensors. Various strike–slip, compressional, and tensional stress regimes are thus identified with different stress fields. Brittle tectonic analyses were carried out to reconstruct possible geometrical relationships between different structures and to establish relative chronologies of corresponding stress fields, considering the folding process. Results indicate that in the studied area, the main fold and thrust structure developed in a general compressional stress regime with an average N032° direction of σ1 stress axis during the Miocene. Strike–slip structures were generated under three successive strike–slip stress regimes with different σ1 directions in the early Miocene (N053°), late Miocene–early Pliocene (N026°), and post-Pliocene (N002°), evolving from pre-fold to post-fold faulting. Tensional structures also developed as a function of the evolving stress regimes. Our reconstruction of stress fields suggests an anticlockwise reorientation of the horizontal σ1 axis since the onset of collision and a significant change in vertical stress from σ3 to σ2 since the late stage of folding and thrusting. A late right-lateral reactivation was also observed on some pre-existing belt-parallel brittle structures, especially along the reverse fault systems, consistent with the recent N–S plate convergence. However, this feature was not reflected by large structures in the HZB of interior Fars. The results should not be extrapolated to the entire Zagros belt, where the deformation front has propagated from inner to outer zones during the younger events.  相似文献   
60.
We study the motion of an infinitesimal mass point under the gravitational action of three mass points of masses μ, 1–2μ and μ moving under Newton's gravitational law in circular periodic orbits around their center of masses. The three point masses form at any time a collinear central configuration. The body of mass 1–2μ is located at the center of mass. The paper has two main goals. First, to prove the existence of four transversal ejection–collision orbits, and second to show the existence of an uncountable number of invariant punctured tori. Both results are for a given large value of the Jacobi constant and for an arbitrary value of the mass parameter 0<μ≤1/2. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号