首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6216篇
  免费   1198篇
  国内免费   1479篇
测绘学   99篇
大气科学   3299篇
地球物理   1181篇
地质学   1704篇
海洋学   418篇
天文学   165篇
综合类   216篇
自然地理   1811篇
  2024年   45篇
  2023年   106篇
  2022年   209篇
  2021年   329篇
  2020年   309篇
  2019年   315篇
  2018年   299篇
  2017年   316篇
  2016年   336篇
  2015年   347篇
  2014年   420篇
  2013年   796篇
  2012年   427篇
  2011年   384篇
  2010年   380篇
  2009年   444篇
  2008年   469篇
  2007年   432篇
  2006年   373篇
  2005年   329篇
  2004年   276篇
  2003年   260篇
  2002年   226篇
  2001年   176篇
  2000年   163篇
  1999年   130篇
  1998年   127篇
  1997年   129篇
  1996年   88篇
  1995年   65篇
  1994年   48篇
  1993年   34篇
  1992年   34篇
  1991年   18篇
  1990年   15篇
  1989年   7篇
  1988年   11篇
  1987年   5篇
  1986年   9篇
  1985年   4篇
  1983年   3篇
排序方式: 共有8893条查询结果,搜索用时 15 毫秒
991.
Mcteorological data at 17 weather stations in the Tianshan Mountains from 1959 to 2003 were analyzed to explore the variations in temperature and snow cover.The abrupt change test for snow depth was performed using Mann-Kendall statistic.The spatial distribution of maximum snow depth was calculated by employing GIDS interpolation and DEM data.The results show that mean temperature in winter had a rising trend at a rate of 0.44℃/10a.The minimum temperature in winter increased more evidently at a rate of 0.79℃/10a.The maximum snow depth has obviously deepened at a rate of 1.15 cm/10 a in the past 45 years,and it was about 16% higher than the average during 1991-2003.The Mann-Kendall statistic test of snow depth indicates that the abrupt change occurred in 1976.The maximum increment for snow cover depth occurred in Zhaoshu(Kunes)(39.3%)and Nilka(39.7%)in the west Tiansban Mountains.In contrast,the snow cover depth reduced by 17% in Barkol in the east Tianshan Mountains.There was a primary change periodicity of about 2.8 years in snow cover.In addition,snow cover days with a depth more than 10 cm increased distinctly,however,there was no obvious advance or delay in snow beginning and ending dates.  相似文献   
992.
博白县近50年气候变化特征分析   总被引:3,自引:0,他引:3  
利用1957~2006年博白国家气象观测站二级站的气象资料,分析了近50a博白县气温、降水和日照的变化特征.分析结果表明,博白县年、冬春季气温呈上升趋势,而夏秋季气温上升不明显,博白县气候正在趋向变暖,特别是最近10a来增温最为明显;年降水总体呈略上升趋势;年日照时数总体呈下降趋势.  相似文献   
993.
A surface runoff parameterization scheme that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell together with a consideration of the subgrid-scaie soil heterogeneity, is implemented into the National Climate Center regional climate model (RegCM_NCC). The effects of the modified surface runoff scheme on RegCMANCC performance are tested with an abnormal heavy rainfall process which occurred in summer 1998. Simulated results show that the model with the original surface runoff scheme (noted as CTL) basically captures the spatial pattern of precipitation, circulation and land surface variables, but generally overestimates rainfall compared to observations. The model with the new surface runoff scheme (noted as NRM) reasonably reproduces the distribution pattern of various variables and effectively diminishes the excessive precipitation in the CTL. The processes involved in the improvement of NRM-simulated rainfall may be as follows: with the new surface runoff scheme, simulated surface runoff is larger, soil moisture and evaporation (latent heat flux) are decreased, the available water into the atmosphere is decreased; correspondingly, the atmosphere is drier and rainfall is decreased through various processes. Therefore, the implementation of the new runoff scheme into the RegCMANCC has a significant effect on results at not only the land surface, but also the overlying atmosphere.  相似文献   
994.
Recent advances in studies of the structural characteristics and temporal-spatial variations of the East Asian monsoon (EAM) system and the impact of this system on severe climate disasters in China are reviewed. Previous studies have improved our understanding of the basic characteristics of horizontal and vertical structures and the annual cycle of the EAM system and the water vapor transports in the EAM region. Many studies have shown that the EAM system is a relatively independent subsystem of the Asian- Australian monsoon system, and that there exists an obvious quasi-biennial oscillation with a meridional tripole pattern distribution in the interannual variations of the EAM system. Further analyses of the basic physical processes, both internal and external, that influence the variability of the EAM system indicate that the EAM system may be viewed as an atmosphere-ocean-land coupled system, referred to the EAM climate system in this paper. Further, the paper discusses how the interaction and relationships among various components of this system can be described through the East Asia Pacific (EAP) teleconnection pattern and the teleconnection pattern of meridional upper-tropospheric wind anomalies along the westerly jet over East Asia. Such reasoning suggests that the occurrence of severe floods in the Yangtze and Hualhe River valleys and prolonged droughts in North China are linked, respectively~ to the background interannual and interdecadal variability of the EAM climate system. Besides, outstanding scientific issues related to the EAM system and its impact on climate disasters in China are also discussed.  相似文献   
995.
Since the last International Union of Geodesy and Geophysics General Assembly(2003),predictability studies in China have made significant progress.For dynamic forecasts,two novel approaches of conditional nonlinear optimal perturbation and nonlinear local Lyapunov exponents were proposed to cope with the predictability problems of weather and climate,which are superior to the corresponding linear theory.A possible mechanism for the"spring predictability barrier"phenomenon for the El Ni(?)o-Southern Oscillation (ENSO)was provided based on a theoretical model.To improve the forecast skill of an intermediate coupled ENSO model,a new initialization scheme was developed,and its applicability was illustrated by hindcast experiments.Using the reconstruction phase space theory and the spatio-temporal series predictive method, Chinese scientists also proposed a new approach to improve dynamical extended range(monthly)prediction and successfully applied it to the monthly-scale predictability of short-term climate variations.In statistical forecasts,it was found that the effects of sea surface temperature on precipitation in China have obvious spatial and temporal distribution features,and that summer precipitation patterns over east China are closely related to the northern atmospheric circulation.For ensemble forecasts,a new initial perturbation method was used to forecast heavy rain in Guangdong and Fujian Provinces on 8 June 1998.Additionally, the ensemble forecast approach was also used for the prediction of a tropical typhoons.A new downscaling model consisting of dynamical and statistical methods was provided to improve the prediction of the monthly mean precipitation.This new downsealing model showed a relatively higher score than the issued operational forecast.  相似文献   
996.
全球变暖加剧对极端气候概率影响的初步探讨   总被引:11,自引:9,他引:11  
依据实际资料,探讨了全球平均温度场演变序列的变率及其概率分布的变化规律,结果表明,仅仅随着平均温度的增加,其相应的时空概率分布变化已相当显著,何况在某些局部地区,其方差或其形状参数也有变动,因而形成极端气候事件频率增大的现象。  相似文献   
997.
We present an analysis of a regional simulation of present-day climate (1981–1990) over southern South America. The regional model MM5 was nested within time-slice global atmospheric model experiments conducted by the HadAM3H model. We evaluate the capability of the model in simulating the observed climate with emphasis on low-level circulation patterns and surface variables, such as precipitation and surface air mean, maximum and minimum temperatures. The regional model performance was evaluated in terms of seasonal means, seasonal cycles, interannual variability and extreme events. Overall, the regional model is able to capture the main features of the observed mean surface climate over South America, its seasonal evolution and the regional detail due to topographic forcing. The observed regional patterns of surface air temperatures (mean, maxima and minima) are well reproduced. Biases are mostly within 3°C, temperature being overestimated over central Argentina and underestimated in mountainous regions during all seasons. Biases in northeastern Argentina and southeastern Brazil are positive during austral spring season and negative in other seasons. In general, maximum temperatures are better represented than minimum temperatures. Warm bias is larger during austral summer for maximum temperature and during austral winter for minimum temperature, mainly over central Argentina. The broad spatial pattern of precipitation and its seasonal evolution are well captured; however, the regional model overestimates the precipitation over the Andes region in all seasons and in southern Brazil during summer. Precipitation amounts are underestimated over the La Plata basin from fall to spring. Extremes of precipitation are better reproduced by the regional model compared with the driving model. Interannual variability is well reproduced too, but strongly regulated by boundary conditions, particularly during summer months. Overall, taking into account the quality of the simulation, we can conclude that the regional model is capable in reproducing the main regional patterns and seasonal cycle of surface variables. The present reference simulation constitutes the basis to examine the climate change simulations resulting from the A2 and B2 forcing scenarios which are being reported in a separate study.  相似文献   
998.
黄荣辉  顾雷  陈际龙 《大气科学》2008,32(4):691-719
本文回顾了关于东亚季风系统的时空变化及其对我国气候异常影响的最近研究进展。许多研究说明,东亚季风系统无论风场的垂直结构、年循环或是水汽输送和降水特征都明显不同于南亚和北澳季风系统,它是亚澳季风系统中一个相对独立的季风系统。并且,研究结果表明了东亚季风系统有明显的时空变化:其中夏季风系统在年际时间尺度上存在着一个准两年周期振荡和具有极向三极子异常的空间分布特征,并从20世纪70年代中后期起至今发生了明显变弱的年代际变化,这个变化在华北尤其显著;而东亚冬季风在年际时间尺度上存在一个准四年周期振荡,从20世纪80年代中后期起也发生了明显变弱的年代际变化,它引起了我国的持续暖冬。进一步的研究还揭示了东亚季风系统的变异是与海–陆–气耦合系统变异及其相互作用密切相关,因而,东亚季风系统可以看成是一个大气–海洋–陆地的耦合气候系统,即称之为东亚季风气候系统。此外,本文还从上述东亚季风气候系统的年际和年代际变异提出了长江流域严重洪涝灾害发生的气候学概念模型和华北持续干旱的气候背景。  相似文献   
999.
1000.
A simulation of climate change trends over North China in the past 50 years and future 30 years was performed with the actual greenhouse gas concentration and IPCC SRES B2 scenario concentration by IAP/LASG GOALS 4.0 (Global Ocean-Atmosphere-Land system coupled model), developed by the State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS). In order to validate the model, the modern climate during 1951-2000 was first simulated by the GOALS model with the actual greenhouse gas concentration, and the simulation results were compared with observed data. The simulation results basically reproduce the lower temperature from the 1960s to mid-1970s and the warming from the 1980s for the globe and Northern Hemisphere, and better the important cold (1950 1976) and warm (1977-2000) periods in the past 50 years over North China. The correlation coefficient is 0.34 between simulations and observations (significant at a more than 0.05 confidence level). The range of winter temperature departures for North China is between those for the eastern and western China's Mainland. Meanwhile, the summer precipitation trend turning around the 1980s is also successfully simulated. The climate change trends in the future 30 years were simulated with the CO2 concentration under IPCC SRES-B2 emission scenario. The results show that, in the future 30 years, winter temperature will keep a warming trend in North China and increase by about 2.5~C relative to climate mean (1960-1990). Meanwhile, summer precipitation will obviously increase in North China and decrease in South China, displaying a south-deficit-north-excessive pattern of precipitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号