首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5042篇
  免费   1401篇
  国内免费   2268篇
测绘学   52篇
大气科学   3969篇
地球物理   755篇
地质学   2179篇
海洋学   429篇
天文学   52篇
综合类   248篇
自然地理   1027篇
  2024年   74篇
  2023年   137篇
  2022年   248篇
  2021年   289篇
  2020年   294篇
  2019年   391篇
  2018年   260篇
  2017年   304篇
  2016年   259篇
  2015年   316篇
  2014年   410篇
  2013年   503篇
  2012年   446篇
  2011年   427篇
  2010年   324篇
  2009年   380篇
  2008年   349篇
  2007年   439篇
  2006年   413篇
  2005年   336篇
  2004年   265篇
  2003年   285篇
  2002年   221篇
  2001年   204篇
  2000年   211篇
  1999年   145篇
  1998年   129篇
  1997年   127篇
  1996年   101篇
  1995年   100篇
  1994年   69篇
  1993年   55篇
  1992年   38篇
  1991年   36篇
  1990年   23篇
  1989年   27篇
  1988年   25篇
  1987年   9篇
  1986年   14篇
  1985年   8篇
  1984年   5篇
  1982年   3篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1975年   1篇
排序方式: 共有8711条查询结果,搜索用时 593 毫秒
341.
朱晓炜  李清泉  孙银川  王璠  王岱  高睿娜  刘颖 《气象》2024,50(3):357-369
利用国家气候中心第二代气候模式预测业务系统(BCC-CPSv2)预测产品,引入印度洋海温信号,采用组合降尺度方法建立了西北地区东部汛期降水预测模型。该预测模型对1991—2017年西北地区东部夏季降水的回报技巧较BCC-CPSv2预测技巧显著提高,空间相关系数由0.42提高到0.75,均方根误差明显减小,最多下降达80%。预测模型对降水空间分布型的预测能力较好,很好地回报了典型年份(1987年和2010年)夏季的降水距平百分率分布。通过抓住气象变量的空间分布特征,组合降尺度方法可以修正动力模式产品的预测误差,为西北地区东部夏季降水预测提供科学依据和技术支持,具有较好的应用前景。  相似文献   
342.
Precipitation runoff is a critical hillslope hydrological process for downslope streamflow and piedmont/floodplain recharge. Shimen hillslope micro‐catchment is strategically located in the central foothill region of Taihang Mountains, where runoff is crucial for water availability in the piedmont corridors and floodplains of north China. This study analyzes precipitation‐runoff processes in the Shimen hillslope micro‐catchment for 2006–2008 using locally designed runoff collection systems. The study shows that slope length is a critical factor, next only to precipitation, in terms of runoff yield. Regression analysis also shows that runoff is related positively to precipitation, and negatively to slope length. Soil mantle in the study area is generally thin and is therefore not as critical a runoff factor as slope length. The study shows a significant difference between overland and subsurface runoff. However, that between the 0–10 and 10–20 cm subsurfaces is insignificant. Runoff hardly occurs under light rains (<10 mm), but is clearly noticeable under moderate‐to‐rainstorm events. In the hillslope catchment, vertical infiltration (accounting for 42–84% of the precipitation) dominates runoff processes in subsurface soils and weathered granite gneiss bedrock. A weak lateral flow (at even the soil/bedrock interface) and the generally small runoff suggest strong infiltration loss via deep percolation. This is critical for groundwater recharge in the downslope piedmont corridors and floodplains. This may enhance water availability, ease water shortage, avert further environmental degradation, and reduce the risk of drought/flood in the event of extreme weather conditions in the catchment and the wider north China Plain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
343.
Having recognized that it is the tropospheric temperature (TT) gradient rather than the land–ocean surface temperature gradient that drives the Indian monsoon, a new mechanism of El Niño/Southern Oscillation (ENSO) monsoon teleconnection has been unveiled in which the ENSO influences the Indian monsoon by modifying the TT gradient over the region. Here we show that equatorial Pacific coralline oxygen isotopes reflect TT gradient variability over the Indian monsoon region and are strongly correlated to monsoon precipitation as well as to the length of the rainy season. Using these relationships we have been able to reconstruct past Indian monsoon rainfall variability of the first half of the 20th century in agreement with the instrumental record. Additionally, an older coral oxygen isotope record has been used to reconstruct seasonally resolved summer monsoon rainfall variability of the latter half of the 17th century, indicating that the average annual rainfall during this period was similar to that during the 20th century. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
344.
In this article, by using the daily precipitation data measured at 58 meteorological stations, spatial and temporal variability of daily precipitation including zero rainfall values (called “precipitation”) and without zero rainfall values (called “rain”) and four precipitation extrema (P0, P20, P50, and P100 representing the daily precipitation with the magnitude smaller than 0.1 mm, bigger than 20 mm, 50 mm, and 100 mm per day, respectively) in the Yangtze River Delta (YRD) during 1958–2007 were analyzed, and the effects of urbanization were further investigated. Results indicate that (i) differing from the downward trends in 1958–1985, daily precipitation and rain in 1986–2007 show slowly downward trends in the mid YRD but show upward trends in the northern and southern YRD. (ii) Spatial and temporal variability of the rain is more complex than daily precipitation. Both of them become smaller but show more obvious fluctuations in 1986–2007. (iii) Urbanizations cause not only the urban rainfall island problem but also more obvious fluctuations of rain intensity in the mid YRD, reflecting more uncertainty of daily precipitation variability. (iv) Urbanizations have little effects on the variability of P0 and P100 but cause notable increases of P20 and P50. (v) The spatial variability of daily precipitation and precipitation extrema in 1958–1985 clearly shows a breakpoint at 30°20′N latitude, but the breakpoint disappears afterward because of the effects of urbanization. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
345.
P. Vidon  P. E. Cuadra 《水文研究》2010,24(13):1821-1833
Understanding the variables regulating tile‐flow response to precipitation in the US Midwest is critical for water quality management. This study (1) investigates the relationship between precipitation characteristics, antecedent water table depth and tile‐flow response at a high temporal resolution during storms; and (2) determines the relative importance of macropore flow versus matrix flow in tile flow in a tile‐drained soya bean field in Indiana. In spring, although variations in antecedent water table depth imparted some variation in tile‐flow response to precipitation, bulk precipitation was the best predictor of mean tile flow, maximum tile flow, time to peak, and run‐off ratio. The contribution of macropore flow to total flow significantly increased with precipitation amount, and macropore flow represented between 11 and 50% of total drain flow, with peak contributions between 15 and 74% of flow. For large storms (>6 cm bulk precipitation), cations data indicated a dilution of groundwater with new water as discharge peaked. Although no clear dilution or concentration patterns for Mg2+ or K+ were observed for smaller tile flow generating events (<3 cm bulk precipitation), macropore flow still contributed between 11 and 17% of the total flow for these moderate size storms. Inter‐drain comparison stressed the need to use triplicate or duplicate tile drain experiments when investigating tile drainage impact on water and N losses at the plot scale. These results significantly increase our understanding of the hydrological functioning of tile‐drained fields in spring, when most N losses to streams occur in the US Midwest. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
346.
Abstract

The objective of this study is to find the appropriate number and location of raingauges for a river basin for flow simulation by using statistical analyses and hydrological modelling. First, a statistical method is used to identify the appropriate number of raingauges. Herein the effect of the number of raingauges on the cross-correlation coefficient between areally averaged rainfall and discharge is investigated. Second, a lumped HBV model is used to investigate the effect of the number of raingauges on hydrological modelling performance. The Qingjiang River basin with 26 raingauges in China is used for a case study. The results show that both cross-correlation coefficient and modelling performance increase hyperbolically, and level off after five raingauges (therefore identified to be the appropriate number of rain-gauges) for this basin. The geographical locations of raingauges which give the best and worst hydrological modelling performance are identified, which shows that there is a strong dependence on the local geographical and climatic patterns.  相似文献   
347.
Sustainable water resources management require scientifically sound information on precipitation, as it plays a key role in hydrological responses in a catchment. In recent years, mesoscale weather models in conjunction with hydrological models have gained great attention as they can provide high‐resolution downscaled weather variables. Many cumulus parameterization schemes (CPSs) have been developed and incorporated into three‐dimensional Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model 5 (MM5). This study has performed a comprehensive evaluation of four CPSs (the Anthes–Kuo, Grell, Betts–Miller and Kain–Fritsch93 schemes) to identify how their inclusion influences the mesoscale model's precipitation estimation capabilities. The study has also compared these four CPSs in terms of variability in rainfall estimation at various horizontal and vertical levels. For this purpose, the MM5 was nested down to resolution of 81 km for Domain 1 (domain span 21 × 81 km) and 3 km for Domain 4 (domain span 16 × 3 km), respectively, with vertical resolutions at 23, 40 and 53 vertical levels. The study was carried out at the Brue catchment in Southwest England using both the ERA‐40 reanalysis data and the land‐based observation data. The performances of four CPs were evaluated in terms of their ability to simulate the amount of cumulative rainfall in 4 months in 1995 representing the four seasonal months, namely, January (winter), March (spring), July (summer) and October (autumn). It is observed that the Anthes–Kuo scheme has produced inferior precipitation values during spring and autumn seasons while simulations during winter and summer were consistently good. The Betts–Miller scheme has produced some reasonable results, particularly at the small‐scale domain (3 km grid size) during winter and summer. The KF2 scheme was the best scheme for the larger‐scale (81 km grid size) domain during winter season at both 23 and 53 vertical levels. This scheme tended to underestimate rainfall for other seasons including the small‐scale domain (3 km grid size) in the mesoscale. The Grell scheme was the best scheme in simulating rainfall rates, and was found to be superior to other three schemes with consistently better results in all four seasons and in different domain scales. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
348.
This paper is concerned with an example of quantitative modelling of orebody formation as a guide to reducing the risk for future mineral exploration. Specifically, the paper presents a detailed 3–D numerical model for the formation of the Century zinc deposit in northern Queensland. The model couples fluid flow with deformation, thermal transport and chemical reactions. The emphasis of the study is a systems approach where the holistic mineralising system is considered rather than concentrating solely on the mineral deposit. In so doing the complete plumbing system for mineralisation is considered with a view to specifying the critical conditions responsible for the ore deposit occurring where it does and having the size and metal grades that are observed. The numerical model is based on detailed geological, tectonic, isotopic and mineralogical data collected over the past 20 years. The conclusions are that the Century zinc deposit is located where it is because of the following factors: (i) a thermal anomaly is associated with the Termite Range Fault due to advection of heat from depth by fluid flow up the Termite Range Fault; (ii) bedding‐plane fissility in the shale rocks hosting the Century zinc deposit has controlled the wavelength and nature of D1 folding in the vicinity of the deposit and has also controlled increases in permeability due to hydrofracture of the shales; such hydrofracture is also associated with the production of hydrocarbons as these shales passed through the ‘oil‐window’; (iii) Pb–Zn leached from crustal rocks in the stratigraphic column migrated up along faults normal to the Termite Range Fault driven by topographic relief associated with inversion at the end of the Isan Orogeny; these fluids mixed with H2S derived at depth moving up the Termite Range Fault to mix with the crustal fluids to precipitate Pb–Zn in a plume downstream from the point of mixing. Critical factors to be used as exploration guides are high temperatures, carbonaceous fissile shales now folded into relatively tight D1 folds, fault‐controlled plumbing systems that enable fluid mixing, depletion of metals upstream of the deposit and,in particular,a very wide Fe‐depletion halo upstream of the deposit.  相似文献   
349.
Abstract

Abstract A complete regional analysis of daily precipitations is carried out in the southern half of the province of Quebec, Canada. The first step of the regional estimation procedure consists of delineating the homogeneous regions within the area of study and testing for homogeneity within each region. The delineation of homogeneous regions is based on using L-moment ratios. A simulation-based testing of statistical homogeneity allows one to verify the inter-site variability. The second step of the procedure deals with the identification of the regional distribution and the estimation of its parameters. The General Extreme Value (GEV) distribution was identified as an appropriate parent distribution. This distribution has already been recommended by several previous research studies for regional frequency analysis of precipitation extremes. The parameters of the GEV distribution are estimated based on the computation of the regional L-CV, L-CS and the mean of annual maximal daily precipitations. The third step consists of the estimation of precipitation quantiles corresponding to various return periods. The final procedure allows for the estimation of these quantiles at sites where no precipitation information is available. The use of a jack-knife resampling procedure with data from the province of Quebec allows one to demonstrate the robustness and efficiency of the regional estimation procedure. Values of the root mean square error were below 10% for a return period of 20 years, and 20% for a return period of 100 years.  相似文献   
350.
Abstract

Abstract The knowledge of the precipitation phase, solid or liquid, is important in high mountains, in order to use models of water and energy balances. During an experiment led in the Bolivian Andes, a complete weather station was installed at an altitude close to 4800 m, including two raingauge recorders, the first one with added antifreeze and oil, based on weight measurement, and the other one with tipping buckets. This device allowed a realistic partition of the liquid and solid phases in this region of tropical mountains, where the observed snow pack at the ground level is strongly influenced by the extremely high solar radiation and where the snow cover is ephemeral. The automation of the ?raingauges? method, compared with several other classical methods, shows satisfactory results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号