首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1310篇
  免费   206篇
  国内免费   374篇
测绘学   64篇
大气科学   5篇
地球物理   331篇
地质学   1024篇
海洋学   201篇
天文学   19篇
综合类   90篇
自然地理   156篇
  2024年   7篇
  2023年   11篇
  2022年   53篇
  2021年   48篇
  2020年   53篇
  2019年   58篇
  2018年   48篇
  2017年   47篇
  2016年   60篇
  2015年   61篇
  2014年   77篇
  2013年   79篇
  2012年   78篇
  2011年   60篇
  2010年   59篇
  2009年   54篇
  2008年   57篇
  2007年   85篇
  2006年   85篇
  2005年   62篇
  2004年   79篇
  2003年   84篇
  2002年   67篇
  2001年   51篇
  2000年   58篇
  1999年   45篇
  1998年   48篇
  1997年   48篇
  1996年   45篇
  1995年   41篇
  1994年   36篇
  1993年   37篇
  1992年   29篇
  1991年   20篇
  1990年   12篇
  1989年   19篇
  1988年   7篇
  1987年   9篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有1890条查询结果,搜索用时 15 毫秒
11.
法向承力锚(Vertically Loaded Plate Anchor,VLA)是一种适用于深水的新型系泊基础,它的拖曳安装过程直接决定了其系泊定位的精度和锚体的最终承载能力。综合考虑VLA锚体、锚泊线和上部船体的运动,建立了一种新的准静力整体分析模型。模型包括不断贯入海床的锚体、锚泊线(土中反悬链段和水中悬链段)和安装船体三部分,针对确定的锚泊线长度,安装船运动张紧锚泊线进行安装的过程,计算了此过程中锚体的运动轨迹、锚泊线形态和作用在船体上的锚泊线张力矢量的变化,重点分析了不同抛链长度和海床土体的参数对安装过程控制的影响,发现链长与水深之比达到5时,接近极限贯入深度。  相似文献   
12.
曾妃甸浅滩原为古滦河三角洲,三角洲废弃后,海底表层沉积物在波浪潮流的簸选及自重应力作用下,沉积物颗粒粗化,粒度单一,且堆积紧密,工程强度较高。平台在该海医插桩时往往难以贯穿该层,其实际插桩深度较预定深度存在较大偏差。本文对此类砂体的形成机制、插桩过程中土体的压实作用对砂体强度的影响进行了分析,在对砂体力学参数做出适当调整后,运用太沙基地基极限荷载公式进行计算,得到了与实际情况较为一致的结果。  相似文献   
13.
透空式水平板波浪上托力分布   总被引:9,自引:3,他引:9  
通过系列模型试验,对波浪上托力沿板宽分布进行了详细分析,提出对于透空式平板结构,发生较大冲击压强或上托力的分布主要分为均布型和局部冲击型两类,由此得到压强分布的计算公式。大量试验资料表明,该公式与实验值有着较好的一致性。  相似文献   
14.
印尼海道的两度关闭与西太平洋暖池的形成和兴衰   总被引:4,自引:0,他引:4  
世界海洋表层水温最高的西太平洋暖池,是全球驱动大气环流的最大热源之一,也是全球热盐环流传输带的热源。新生代晚期印尼海道的关闭是暖池得以形成的基本条件。在印尼海道区划出了对印度尼西亚穿越流起阻挡作用的5道屏障,分析了5道屏障的形成过程和年代,据此提出了印尼海道两度关闭的模式。板块运动导致印尼海道关闭,有利于暖池发展,同时也存在不利的负面影响,本区构造运动对暖池的演变具有特有的双向复合控制作用;由此出发勾勒了近1000多万年来西太平洋暖池的形成和兴衰史:11~9MaBP为原始暖池形成期,9~6MaBP为暖池演化的第一衰退期,6MaBP以来为现代暖池的孕育和发展期,其间在1~0.2MaBP穿插着暖池演化的第二衰退期。上述暖池兴衰史的演化模式,得到了暖池区ODP1143站浮游有孔虫组合所反映的古海水温跃层深度的验证。  相似文献   
15.
Measurement and modeling of bed shear stress under solitary waves   总被引:1,自引:0,他引:1  
Direct measurements of bed shear stresses (using a shear cell apparatus) generated by non-breaking solitary waves are presented. The measurements were carried out over a smooth bed in laminar and transitional flow regimes (~ 104 < Re < ~ 105). Measurements were carried out where the wave height to water depth (h/d) ratio varied between 0.12 and 0.68; maximum near bed velocity varied between 0.16 m/s and 0.51 m/s and the maximum total shear stress (sum of skin shear stress and Froude–Krylov force) varied between 0.386 Pa and 2.06 Pa. The total stress is important in determining the stability of submarine sediment and in sheet flow regimes. Analytical modeling was carried out to predict total and skin shear stresses using convolution integration methods forced with the free stream velocity and incorporating a range of eddy viscosity models. Wave friction factors were estimated from skin shear stress at different instances over the wave (viz., time of maximum positive total shear stress, maximum skin shear stress and at the time of maximum velocity) using both the maximum velocity and the instantaneous velocity at that phase of the wave cycle. Similarly, force coefficients obtained from total stress were estimated at time of maximum positive and negative total stress and at maximum velocity. Maximum positive total shear stress was approximately 1.5 times larger than minimum negative total stress. Modeled and measured positive bed shear stresses are well correlated using the best convolution model, but the model underestimates the data by about 4%. Friction factors are dependent on the choice of normalizing using the maximum velocity, as is conventional, or the instantaneous velocity. These differ because the stress is not in phase with the velocity in general. Friction factors are consistent with previous data for monochromatic waves, and vary inversely with the square-root of the Reynolds number. The total shear stress leads the free stream fluid velocity by approximately 50°, whereas the skin friction shear stress leads by about 30°, which is similar to that reported by earlier researchers.  相似文献   
16.
晚中生代期间,由于古太平洋俯冲板片俯冲于欧亚板块之下,从而在欧亚大陆东缘存在一条巨型的类似于现今太平洋东侧的安第斯型俯冲带。岩浆活动记录显示,70 Ma左右,可能由于外来的正地形地体拼贴上该俯冲带,从而导致这条巨型安第斯型俯冲带逐渐消失,欧亚大陆东缘逐渐从主动大陆边缘变为被动大陆边缘。然而,新生代早期以来,伴随着菲律宾海板块从赤道北移,该被动大陆边缘又重新活化,变为主动大陆边缘,并逐渐形成了巨型的沟-弧-盆系统,期间西太平洋地区大致经历了三期的弧后扩张,即始新世、渐新世—中新世、上新世以来,且菲律宾海板块正好包括了这3个扩张期的弧后扩张盆地:西菲律宾海盆、四国海盆-帕里西维拉海盆以及马里亚纳海槽。本文详细总结了太平洋板块与次级的板块—菲律宾海板块及卡罗琳板块的地质演化历史,且详细探讨了以上3个主要板块之间相互作用的典型区域(菲律宾海板块东南侧)的地质学和岩石学特征以及尚存在的重要科学问题,并展望了未来该区域的研究方向。  相似文献   
17.
王科  张犀  高鑫 《中国海洋工程》2011,25(4):699-708
The interaction between wave and horizontal and vertical plates is investigated by the boundary element method,and the relations of wave exciting force with plate thickness,submergence and length are obtained.It is found that:1) The efficient wave exciting force exists while plate submergence is less than 0.5 m,and the plate is very thin with order O(0.005 m).2) The maximum heave wave exciting force exists,and it is the main factor for surface and submerged horizontal plate while the roll force can be ignored.3) The maximum sway wave exciting force exists,it is the main factor for surface or submerged vertical plate,and the roll force is about 20 times of horizontal plate.  相似文献   
18.
From the experimental studies in recent years, it has become known that when a wave breaks directly on a vertical faced coastal structure, high magnitude impact pressures are produced. The theoretical and experimental studies show that the dynamic response of such structures under wave impact loading is closely dependent on the magnitude and duration of the load history. The dynamic analysis and design of a coastal structure can be succeeded provided the design load history for the wave impact is available. Since these types of data are very scarce, it is much more convenient to follow a method which is based on static analysis for the dynamic design procedure. Therefore, to facilitate the dynamic design of a vertical plate that is exposed to breaking wave impact, a multiplication factor called “dynamic magnification factor” is herein presented which is defined as the ratio of the maximum value of the dynamic response to that found by static analysis. The computational results of the present study show that the dynamic magnification factor is a useful ratio to transfer the results of static analysis to the dynamic design of a coastal plate for the maximum impact pressure conditions of pmaxH0≤18.  相似文献   
19.
回顾了20世纪60年代板块学说的诞生,以及海洋地球物理学及海洋地球物理学家对这场地球科学革命所做出的巨大贡献。二次世界大战中,海洋技术飞速进步;战后,西方国家的海洋地球物理学家利用这些技术在海上开展了广泛的地球物理调查,积累了大量资料,有了许多重要发现。大洋地震带原来是一条裂谷带;大洋地磁场存在以中脊为中心,向两边正负相间的对称异常条带;大洋底沉积很薄,且从中脊向两边逐步加厚;大洋地壳仅厚数千米,而大陆地壳厚达30千米以上;大洋中脊处热流值很高,向两边逐步减小;地球的地震波速度从地表到约深80 km逐步增大,从80 km深度处速度开始减小,说明地球表层存在岩石圈,其下部存在软流圈;在海沟处,地震震中分布从海沟开始,向下沿约45°倾角到700 km深处,这可能是大洋岩石圈俯冲之处。由此地球科学家提出了板块构造假说,认为地幔深处的岩浆沿大洋中脊处向上运移,在海底处不断产生新洋壳;新洋壳(岩石圈)不断向两边运动,在海沟处向大陆岩石圈之下俯冲、消亡;当大洋岩石圈俯冲消亡之后,两边的大陆就发生碰撞,形成造山带,因此,地球上最老的大陆年龄达38亿年,而大洋岩石圈最老年龄只有1.8亿年。板块构造学说坚持活动论,是大陆漂移假说的发展之结果,更是地球科学深刻革命的开始。当它上陆之后,地球科学就掀起了革命的风暴。  相似文献   
20.
In the present paper, a hydroelastic model is developed to deal with surface gravity wave interaction with an elastic bed based on the small amplitude water wave theory and plate deflection in finite water depth. The elastic bottom bed is modelled as a thin elastic plate and is based on the Euler-Bernoulli beam equation. The wave characteristics in the presence of the elastic bed is analyzed in both the cases of deep and shallow water waves. Further, the linearized long wave equation is generalized to include bottom flexibility. A generalized expansion formula for the velocity potential is derived to deal with the boundary value problems associated with surface gravity waves having an elastic bed. The utility of the expansion formula is illustrated by demonstrating specific physical problems which will play significant role in the analysis of wave structure interaction problems. Behavior of the wave spectra are discussed in the case of closed basin having a free surface and an elastic bottom topography.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号