首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1146篇
  免费   196篇
  国内免费   312篇
测绘学   57篇
大气科学   84篇
地球物理   174篇
地质学   828篇
海洋学   159篇
天文学   28篇
综合类   55篇
自然地理   269篇
  2024年   6篇
  2023年   10篇
  2022年   32篇
  2021年   56篇
  2020年   57篇
  2019年   61篇
  2018年   55篇
  2017年   42篇
  2016年   57篇
  2015年   56篇
  2014年   76篇
  2013年   88篇
  2012年   74篇
  2011年   84篇
  2010年   72篇
  2009年   86篇
  2008年   75篇
  2007年   63篇
  2006年   75篇
  2005年   78篇
  2004年   71篇
  2003年   67篇
  2002年   53篇
  2001年   36篇
  2000年   43篇
  1999年   42篇
  1998年   26篇
  1997年   20篇
  1996年   16篇
  1995年   20篇
  1994年   12篇
  1993年   11篇
  1992年   1篇
  1991年   13篇
  1990年   6篇
  1989年   2篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1977年   1篇
排序方式: 共有1654条查询结果,搜索用时 287 毫秒
991.
The Méiganga area is situated in the Adamawa–Yadé domain (AYD) of the Pan-African fold belt in Cameroon. The AYD is characterized by abundant plutonic rocks that intruded Palaeoproterozoic gneisses. It is cut by the transcurrent Central Cameroonian Shear Zone (CCSZ). The studied area is made up of metadiorite (MD), pyroxene-bearing granite (PGr) and biotite-muscovite granite (BMGr), hosted in a metasedimentary sequence of amphibole-biotite gneisses. The granitoids are metaluminous to slightly peraluminous, and mainly of I-type (ASI ≤ 1.1), representing a high-K calc-alkaline to shoshonitic suite. They were derived from crustal protoliths (BMGr), from rocks of mantle origin (MD, PGr), and/or from the remelting of metabasalt or metatonalite (MD, PGr). Four successive deformational phases (D1, D2, D3, and D4) are present in the Méiganga area. The S1 foliation is formed by tectonic transposition of the S0 primitive surface represented by contacts between the gneiss and intercalated amphibolites. The synmigmatitic D2 deformational phase is characterized by S2 banded schistosity, S2/C2 sinistral shear planes, and F2 folds with axes parallel to a L2 stretching lineation. Imprints of the D2 and subsequent deformational phases are similar in the metadiorite and host rocks, implying syn-D2 emplacement and crystallization of the metadiorite; therefore 614–619 Ma 207Pb/206Pb zircon evaporation ages obtained for this rock type date the syn-D2 magmagenesis. Similarly, the D3 phase of the PGr is 601 ± 1 Ma, dated by the 207Pb/206Pb evaporation method. D4 is a late-stage brittle deformational phase. Sinistral movement of the CCSZ is associated with D2, whereas its latest activity, characterized by dextral slip, cannot be older than emplacement of the 558 ± 2 Ma BMGr (207Pb/206Pb zircon evaporation age).  相似文献   
992.
We present new geochemical data (major- and trace-elements, as well as Sr and Nd isotopic compositions) of volcanic rocks erupted from Popocatépetl volcano during the volcanic event from December 2000 to January 2001. These data along with an exhaustive compilation of geochemical and Sr, Nd, and Pb isotope data reported for Popocatépetl rocks and nearby volcanic areas are used to examine the origin and geochemical evolution of the magmas in the central Mexican volcanic belt (CMVB). During this period of volcanic eruptions Popocatépetl produced ash columns as high as 7 km. Pyroclastic flows and lahars were observed after the completion of the activity. Samples of banded pumice and a bomb fragment transported by the lahar were chemically analysed for this work. Rocks show an andesitic composition with 58.5–61.7 wt.% SiO2 and 5.9–4.0 wt.% MgO. Contents of large ion lithophile elements (LILE), rare-earth elements (REE) and Zr are nearly constant through the compositional range. No significant Eu anomaly is present, but the samples show Nb-anomaly relative to LILE and high-field strength elements (HFSE). Nd- and Sr-isotopic compositions of these samples range from 143Nd/144Nd = 0.51291 to 0.51287 and 87Sr/86Sr = 0.70399 to 0.70422. Comparison of Popocatépetl products with volcanic rocks from the nearby areas shows that the magmas in CMVB were generated in a heterogeneously veined-mantle source enriched in LILE, HFSE, and REE. Additional crustal assimilation as well as fractional crystallization could account for the great chemical variability of rocks in the CMVB. Statistical comparison of the geochemical compositions of the volcanic products ejected from 1994 to 2000 to those ejected during the 2001 event shows that most geochemical parameters (major- and trace-elements, normative minerals, Sr and Nd isotopic composition, as well some elemental ratios) present no statistically significant differences. Statistically significant differences in the mean only were computed for the major-elements SiO2, FeO, MgO, CaO, and K2O, as well as for the rare-earth elements Nd, Sm, Eu, Gd, Dy, Ho, Tm, and Yb.  相似文献   
993.
《International Geology Review》2012,54(14):1763-1785
Central Jilin Province lies along the eastern edge of the Xing–Meng orogenic belt of northeast China. At least 10 Mo deposits have been discovered in this area, making it the second-richest concentration of Mo resources in China. To better understand the formation and distribution of porphyry Mo deposits in the area, we investigated the geological characteristics of the deposits and applied zircon UPb and molybdenite Re–Os isotope dating to constrain the age of mineralization. Our new geochronological data show the following: the Jidetun Mo deposit yields molybdenite Re–Os model ages of 164.6–167.1 Ma, an isochron age of 168 ± 2.5 Ma, and a weighted mean model age of 165.9 ± 1.2 Ma; the Houdaomu Mo deposit yields molybdenite Re–Os model ages of 167.4–167.7 Ma, an isochron age of 168 ± 13 Ma, and a weighted mean model age of 167.5 ± 1.2 Ma; and the Chang’anpu Mo deposit yields a zircon U–Pb age for granodiorite porphyry of 166.9 ± 1.5 Ma (N = 16). These new age data, combined with existing molybdenite Re–Os dates, show that intense porphyry Mo mineralization was coeval with magmatism during the Middle Jurassic (167.8 ± 0.4 Ma, r > 0.999). The geotectonic mechanisms responsible for Mo mineralization were probably related to subduction of the Palaeo-Pacific plate beneath the Eurasian continent. Combining published molybdenite Re–Os and zircon U–Pb ages for northeast China, the Mo deposits are shown to have been formed during multiple events coinciding with periods of magmatic activity. We identified three phases of mineralization, two of which had several stages: the Caledonian (485–480 Ma); the Indosinian comprising the Early–Middle Triassic (248–236 Ma) and Late Triassic (226–208 Ma) stages; and the Yanshanian phase comprising the Early–Middle Jurassic (202–165 Ma), Late Jurassic–early Early Cretaceous (154–129 Ma), and Early Cretaceous (114–111 Ma) stages. Although Mo deposits formed during each phase/stage, most of the mineralization occurred during the Early–Middle Jurassic.  相似文献   
994.
The Beypazar? granitoid has been studied with respect to multi-radiometric dating and oxygen isotopic geothermometry. Radiometric dating of the granitoid yields zircon U-Pb isochron ages ranging from 72.5 ± 12.6 to 78.6 ± 4.7, and K-Ar ages of 71.4 ± 2.8 to 74.9 ± 2.9 and 59.5 ± 2.2 to 75.4 ± 2.9 Ma for hornblende and biotite, respectively. Oxygen isotope thermometry for the granitoid gives temperatures of 550 ± 25°C to 605 ± 30, 390 ± 15 to 540 ± 25°C, and 481 ± 5 to 675 ± 10°C, for hornblende, biotite, and K-feldspar, respectively, when paired with quartz. The systematic differences among ages according to different techniques used on different minerals are used to reconstruct the cooling history of the granite. The results yield rapid cooling rates of 33.3°C/Ma from 800°C to 550°C, and slow cooling rates of about 15 ± 0.5°C/Ma from 550 to 300°C. Rapid subsolidus cooling between 600°C and 550°C is documented by 40Ar/39Ar ages on amphibole and biotite between 71.4 ± 2.8 and 75.4 ± 2.9 Ma. Younger ages on biotites from two samples (59.5 ± 2.2 and 64.4 ± 2.5) are probably caused by loss of Ar. The reason for this possible Ar loss can be interpreted as slower subsolidus cooling (~375°C) ages. There is an apparent spatial and temporal relationship between the intrusion-cooling of the Beypazar? granitoid and the evolution of the ?zmir–Ankara–Erzincan ocean belonging to the northern Neo-Tethyan ocean domain.  相似文献   
995.
Abstract

A newly discovered Devonian ophiolite located in the Taoxinghu area of central Qiangtang on the Qinhai–Tibet Plateau is described. The ophiolite consists of gabbro and diabasic dikes, and invasive cumulate gabbros-leucogabbros. The ophiolite has undergone greenschist facies metamorphism and minor deformation. Dating of the metagabbro by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U–Pb techniques yielded a weighted mean age of 367.2 ± 3.3 Ma (Late Devonian). Whole-rock geochemical analyses show that the rocks belong to the tholeiite series, with weak depletion in light rare-earth elements (LREEs), almost no Eu anomalies, weak enrichment in large-ion lithophile elements (LILEs), depletion in Nb and Ta, and weak negative Hf and Ti anomalies. These characteristics are similar to those of back-arc basin basalts. Together, these characteristics suggest that the rocks of the Devonian ophiolite formed by ~30% partial melting of spinel lherzolite, which was enriched by interaction with aqueous fluids during the late-generation phases; there is no evidence of subduction-related melting. The Devonian ophiolite rocks in the Taoxinghu area were first discovered in the LongmuCo–Shuanghu–Lancang suture zone. Detailed geochemical analyses show that the rocks formed in a back-arc ocean basin environment, indicating that the LongmuCo–Shuanghu–Lancang suture zone in central Qiangtang represents a Late Devonian intra-oceanic subduction zone in the Palaeo–Tethys Ocean. The discovery of the central Qiangtang Devonian ophiolite provides essential data for understanding the evolutionary history of the Palaeo–Tethys Ocean, and for identifying and understanding the roles of the different tectonic units on the Qinghai–Tibet Plateau.  相似文献   
996.
ABSTRACT

This study presents new whole-rock major and trace element geochemistry, zircon U–Pb ages, and Hf-isotope compositions for volcanic rocks from the Manketouebo Formation of the central Great Xing’an Range, NE China. These data provide precise ages and information on the petrogenesis and source of the magmas that formed this formation, furthering our understanding of the geodynamic setting of the large-scale late Mesozoic magmatism in the Great Xing’an Range and other areas in NE China. The Manketouebo Formation in the study area is dominated by rhyolites and rhyolitic tuffs with minor trachydacites. The LA-ICP-MS zircon U–Pb dating indicates that these volcanic rocks formed between 143 and 139 Ma. The volcanic rocks contain high silica (66.70–79.91 wt.%) and total alkali (5.93–9.72 wt.%) concentrations, and low concentrations of MgO (0.08–1.15 wt.%), total FeO (0.68–4.50 wt.%), and CaO (0.10–2.56 wt.%). They are enriched in large-ion lithophile elements (LILEs; e.g. Rb, Th, and U) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs; e.g. Nb, Ta, Ti, and P) and heavy rare earth elements (HREEs), indicating that they are similar to highly fractionated I-type igneous rocks. All of the magmatic zircons from the analysed samples have high initial 176Hf/177Hf ratios (0.282900–0.283093), positive εHf(t) values (7.48–14.19), and young Hf two-stage model ages (954–344 Ma) that suggest the primary magma that formed the volcanic rocks of the Manketouebo Formation was derived from the partial melting of Neoproterozoic to Phanerozoic juvenile crustal material, indicating in turn that significant crustal growth occurred at this time within the Xing’an Terrane. These data, combined with previous research into the spatial–temporal distribution of Mesozoic volcanic rocks in NE China, suggest that the Early Cretaceous magmatism in the Great Xing’an Range was influenced by both the subduction of the Palaeo-Pacific Plate and the closure of the Mongol–Okhotsk Ocean. This was a crucial period in the transformation from the Mongol–Okhotsk Ocean to the Palaeo-Pacific tectonic regimes. In summary, the early stages of Early Cretaceous magmatism in this area were related to the closure of the Mongol–Okhotsk Ocean, whereas the later stages of magmatism in this area and elsewhere in NE China were related to the subduction of the Palaeo-Pacific Plate.  相似文献   
997.
绿水碱长花岗岩锆石的LA--ICP--MS U--Pb 同位素测试结果为139. 4 ± 1. 6 Ma,表明其形成于早白垩世。地球化学特征显示绿水碱长花岗岩属于弱过铝质高钾钙碱性A2 型花岗岩,具高硅、高碱和低CaO、Fe2O3、MgO 和P2O5 特征; 轻稀土元素( LREE) 富集,重稀土元素( HREE) 相对亏损,铕具有明显的负异常; 高场强元素Zr、Hf 和大离子亲石元素Rb、Th、U 及K 相对富集,Ba、Nb、Ta、 Sr 和P 具明显的亏损。结合区域地质资料,认为这些碱长花岗岩的形成可能与古太平洋板块俯冲导致的加厚岩石圈拆沉后伸展环境有关。  相似文献   
998.
李霞 《世界地质》2013,32(3):549-557
以地层划分、对比、沉积岩建造、火山岩建造、侵入岩浆活动和变质变形等地质记录为基础,以板块理论为指导,对福建省大地构造单元进行了重新认识和划分。将福建省区划分为华夏地块( Ⅴ --3) 、东南沿海岩浆弧( Ⅴ--4) 和闽中结合带( Ⅴ--7) 等3 个Ⅱ级构造单元,武夷古弧盆系( Ⅴ--3-- 1) 、南平-宁化( 夭折) 裂谷( Ⅴ--3--2) 、闽西南陆表海盆地( Ⅴ--3--3) 、闽东沿海岩浆弧( Ⅴ--4--1) 和松溪-尤溪蛇绿混杂岩( Ⅴ--7--1) 等5 个Ⅲ级单元,以及建宁古弧后盆地( Ⅴ--3--1--1) 等18 个Ⅳ 级构造单元。  相似文献   
999.
滇中易门县狮子山铜矿是产于扬子古陆边缘昆阳裂谷易门裂陷盆地内典型东川式层状矿床, 是在昆阳裂谷背景下经同生沉积和二次富集作用而成, 在鹅头厂组、落雪组、因民组等地层中均有不同矿体产出,矿床成因属热卤水沉积型东川式铜矿床。矿床的形成经历了同生阶段、成岩阶段和后生阶段。矿床在同生沉积阶段形成, 成岩阶段固结成岩, 后期的岩浆活动对矿床起到一定富集和改造作用。本文研究认为, 矿床受地层与岩性、岩相古地理、构造、岩浆岩等因素的控制, 通过对矿床成矿要素的分析和总结, 归纳了该区的找矿标志, 提出了矿区本部和近外围的找矿方向和靶区优选。  相似文献   
1000.
The Palaeozoic Alice Springs Orogeny was a major intraplate tectonic event in central and northern Australia. The sedimentological, structural and isotopic effects of the Alice Springs Orogeny have been well documented in the northern Amadeus Basin and adjacent exhumed Arunta Inlier, although the full regional extent of the event, as well as lateral variations in timing and intensity are less well known. Because of the lack of regional isotopic data, we take a sedimentological approach towards constraining these parameters, compiling the location and age constraints of inferred synorogenic sedimentation across a number of central and northern Australian basins. Such deposits are recorded from the Amadeus, Ngalia, Georgina, Wiso, eastern Officer and, possibly, Warburton Basins. Deposits are commonly located adjacent to areas of significant basement uplift related to north‐south shortening. In addition, similar aged orogenic deposits occur in association with strike‐slip tectonism in the Ord and southern Bonaparte Basins of northwest Australia. From a combination of sedimentological and isotopic evidence it appears that localised convergent deformation started in the Late Ordovician in the eastern Arunta Inlier and adjacent Amadeus Basin. Synorogenic style sedimentation becomes synchronously widespread in the late Early Devonian and in most areas the record terminates abruptly close to the end of the Devonian. A notable exception is the Ngalia Basin in which such sedimentation continued until the mid‐Carboniferous. In the Ord and Bonaparte Basins there is evidence of two discrete pulses of transcurrent activity in the Late Devonian and Carboniferous. The sedimentological story contrasts with the isotopic record from the southern Arunta Inlier, which has generally been interpreted in terms of continuous convergent orogenic activity spanning most of the Devonian and Carboniferous, with a suggestion that rates of deformation increased in the mid‐Carboniferous. Either Carboniferous sediments have been stripped off by subsequent erosion, or sedimentation outpaced accommodation space and detritus was transported elsewhere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号