A fluorescent sand-tracer experiment was performed at Comporta Beach (Portugal) with the aim of acquiring longshore sediment transport data on a reflective beach, the optimization of field and laboratory tracer procedures and the improvement of the conceptual model used to support tracer data interpretation.
The field experiment was performed on a mesotidal reflective beach face in low energetic conditions (significant wave height between 0.4 and 0.5 m). Two different colour tracers (orange and blue) were injected at low tide and sampled in the two subsequent low tides using a high resolution 3D grid extending 450 m alongshore and 30 m cross-shore. Marked sand was detected using an automatic digital image processing system developed in the scope of the present experiment.
Results for the two colour tracers show a remarkable coherence, with high recovery rates attesting data validity. Sand tracer displayed a high advection velocity, but with distinct vertical distribution patterns in the two tides: in the first tide there was a clear decrease in tracer advection velocity with depth while in the second tide, the tracer exhibited an almost uniform vertical velocity distribution. This differing behaviour suggests that, in the first tide, the tracer had not reached equilibrium within the transport system, pointing to a considerable time lag between injection and complete mixing. This issue has important implications for the interpretation of tracer data, indicating that short term tracer experiments tend to overestimate transport rates. In this work, therefore, longshore estimates were based on tracer results obtained during the second tide.
The estimated total longshore transport rate at Comporta Beach was 2 × 10− 3 m3/s, more than four times larger than predicted using standard empirical longshore formulas. This discrepancy, which results from the unusually large active moving layer observed during the experiment, confirms the idea that most common longshore transport equations under-estimate total sediment transport in plunging/surging waves. 相似文献
Following the installation of a broadband network on Mt. Etna, sustained Long-Period (LP) activity was recorded accompanying a period of total quiescence and the subsequent onset of the 2004–2005 effusive episode. From about 56000 events detected by an automatic classification procedure, we analyse a subset of about 3000 signals spanning the December 17th, 2003–September 25th, 2004, time interval. LP spectra are characterised by several, unevenly-spaced narrow peaks spanning the 0.5–10 Hz frequency band. These peaks are common to all the recording sites of the network, and different from those associated with tremor signals. Throughout the analysed time interval, LP spectra and waveforms maintain significant similarity, thus indicating the involvement of a non-destructive source process that we interpret in terms of the resonance of a fluid-filled buried cavity. Polarisation analysis indicates radiation from a non-isotropic source involving large amounts of shear. Concurrently with LP signals, recordings from the summit station also depict Very-Long-Period (VLP) pulses whose rectilinear motion points to a region located beneath the summit craters at depths ranging between 800 and 1100 m beneath the surface. Based on a refined repicking of similar waveforms, we obtain robust locations for a selected subset of the most energetic LP events from probabilistic inversion of travel-times calculated for a 3D heterogenous structure. LP sources cluster in a narrow volume located beneath the summit craters, and extending to a maximum depth of ≈ 800 m beneath the surface. No causal relationships are observed between LP, VLP and tremor activities and the onset of the 2004–2005 lava effusions, thus indicating that magmatic overpressure played a limited role in triggering this eruption. These data represent the very first observation of LP and VLP activity at Etna during non-eruptive periods, and open the way to the quantitative modelling of the geometry and dynamics of the shallow plumbing system. 相似文献
Global controls on the oceanographic influences on the nature of carbonate factories are broadly understood. The details of the influences of changes in temperature and nutrients across individual carbonate shelves are less well constrained, however. This study explores spatial and temporal variations in chemical oceanography along and across the Yucatan Shelf, a modern carbonate ramp, and how these factors relate to variable bottom character, sediment and sediment geochemistry. In‐situ sensors and remote‐sensing data indicate the sporadic presence of cool, upwelled water with low dissolved oxygen and elevated Chlorophyll‐a. This current‐driven, westward flow of upwelled water is most evident in a zone just offshore of the northern peninsular shoreline, but its influence wanes ca 75 km offshore and as the shore turns southward. The impacts of this water mass include a transitional photozoan–heterozoan assemblage with biosiliceous components, relict grains and common thin Holocene sediment accumulations nearshore; further offshore are coralgal reefs and expansive sand plains. Geochemical proxies of bulk sediment, including high δ18O and elevated HREE/LREE (heavy rare‐earth element/light rare‐earth element) ratios near, and downcurrent of, the upwelling source, are interpreted to represent the signal of nearshore, westward movement of the cool and nutrient‐rich, upwelled water. Collectively, these data emphasize how local processes such as upwelling and longshore transport can variably influence carbonate sediment accumulations and their geochemical signatures, both along and across individual shelves. These data and insights provide an analogue for the influences of spatial variability of water masses in the geological record, and for accurate interpretation of stratigraphic changes of sedimentary and geochemical proxy data in carbonate archives. 相似文献
Seagrasses are marine angiosperms that form extensive submarine meadows in the photic zone where carbonate producing biota dwell as epiphytes on the leaves or as infaunal forms, and act as prolific carbonate sediment factories. Because seagrasses have a low preservation potential and records of exceptionally well‐preserved and plant material from marine settings are rare, these palaeoenvironments are difficult to identify in the rock record. Consequently, sedimentological and palaeontological proxies are the main indicators of the presence of seagrass‐dominated ecosystems. This work investigates the skeletal assemblage of Modern (Maldivian and western Mediterranean) and fossil (Eocene; Apula and Oman carbonate platforms and Oligocene; Malta platform) seagrass examples to characterize the skeletal assemblage of modern and fossil seagrasses. Two main types of grains, calcareous algae and foraminifera, constitute around 50% of the bioclastic sediment in both tropical Maldivian and temperate Mediterranean scenarios. However, in the tropical setting they are represented by green algae (Halimeda), while in the Mediterranean they are represented by corallinacean red algae. In contrast, in the Eocene examples, the foraminifera are the most conspicuous group and the green algae are also abundant. The opposite occurs in the Maltese Chattian, which is dominated by coralline algae (mean 42%), although the foraminifera are still abundant. It is suggested to use the term foralgal to identify the seagrass skeletal assemblage. To discriminate between red algae and green algae dominance, the introduction of the prefixes ‘GA’ (green algae) and ‘RA’ (red algae) is proposed. The investigated examples provide evidence that the green algae–foralgal assemblage is typical of tropical, not excessively dense seagrass meadows, characterized by a well‐illuminated substrate to support the development and calcification of the Halimeda thallus. Contrarily, the red algae‐foralgal assemblage is typical of high density tropical to subtropical seagrass meadows which create very dense oligophotic conditions on the sea floor or in temperate settings where Halimeda cannot calcify. 相似文献
Pulsatory characteristics of wind velocity in sand flow over Gobi and mobile sand surface have been investigated experimentally in the wind tunnel. The primary goal of this paper is to reveal the relation- ship between pulsatory characteristics of instantaneous wind speed in sand flow and the motion state of sand grains. For a given underlying surface, pulsation of wind velocities in sand flow on different heights has a good correlation. As the space distance among different heights increases, fluctuation of instantaneous wind speed presents a decreasing trend and its amplitude is closely related to the mo- tion state of sand grains and their transport. Pulsatory intensity increases with the indicated wind speed, but its relative value does not depend on it, only agrees with height. 相似文献
On the southwest-facing slopes of a bedrock ridge lying between Cardigan Bay to the north and the Afon Teifi to the south stands a group of hills in which 30-35 m of cross-laminated and parallel-laminated sands with lenticular upward-fining gravel sequences are overlain by 10-12 m of gravel in a single foreset bed. The sediments mantle a surface of till sloping gently toward the southwest, were transported toward the southwest (across one margin of the Afon Teifi valley), and were cut by a system of densely arranged conjugate normal faults striking northwest-southeast. The lenticular gravels and fault system suggest that the deposits accumulated as a glaciofluvial outwash spread, and on top of an ice-lobe that became isolated in the Teifi valley during the downwasting of a glacier which had occupied Cardigan Bay and much of the country to the south. The large gravel foresets capping the succession are the only indication at Banc-y-Warren of the former existence of a lake, but neither a large nor deep body of water need be envisaged. 相似文献