首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1427篇
  免费   339篇
  国内免费   520篇
大气科学   4篇
地球物理   149篇
地质学   1792篇
海洋学   236篇
天文学   4篇
综合类   33篇
自然地理   68篇
  2024年   14篇
  2023年   48篇
  2022年   71篇
  2021年   101篇
  2020年   82篇
  2019年   76篇
  2018年   65篇
  2017年   67篇
  2016年   72篇
  2015年   89篇
  2014年   89篇
  2013年   97篇
  2012年   93篇
  2011年   95篇
  2010年   93篇
  2009年   117篇
  2008年   116篇
  2007年   109篇
  2006年   101篇
  2005年   80篇
  2004年   72篇
  2003年   66篇
  2002年   71篇
  2001年   66篇
  2000年   54篇
  1999年   57篇
  1998年   28篇
  1997年   42篇
  1996年   39篇
  1995年   19篇
  1994年   22篇
  1993年   22篇
  1992年   10篇
  1991年   10篇
  1990年   7篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1972年   1篇
排序方式: 共有2286条查询结果,搜索用时 0 毫秒
41.
鄂尔多斯盆地下奥陶统碳酸盐岩有机相类型及生烃潜力   总被引:26,自引:0,他引:26  
夏新宇  张文正 《沉积学报》1999,17(4):638-643
对鄂尔多斯盆地下奥陶统马家沟组碳酸盐岩的各种沉积环境的有机相特征进行了研究,结果表明平均有机碳丰度最高的是陆缘斜坡相碳酸盐岩(0.26%),其次是膏盐湖(0.22%)、膏云坪(0.21%),而开阔海、云坪和滩等环境的碳酸盐岩有机碳平均含量较低(<0.20%);碳酸盐岩干酪根样品多数为富氧、贫氢,显示其有机质类型较差;岩石地球化学特征和生物化石特征反映出陆缘斜坡处于相对还原的环境,而其他沉积环境则为氧化环境。鄂尔多斯盆地下奥陶统的大部分碳酸盐岩处于生烃潜力较差的C~D相。从有机质数量、有机相类型来判断,鄂尔多斯盆地下奥陶统碳酸盐岩不是好烃源岩,难以形成具有一定规模的气田。  相似文献   
42.
《International Geology Review》2012,54(11):1350-1362
ABSTRACT

Recent studies show that crustal carbonates recycled into the mantle can be traced using Mg isotopes of basalts. However, the species of recycled carbonates are poorly constrained. Carbonates have lower δ26Mg values and higher 87Sr/86Sr ratios relative to the mantle, but different carbonate species display different mixing curves with the mantle in the Mg-Sr isotopic diagram because of differences in their Sr and Mg contents. Thus a combined study of Mg-Sr isotopes can constrain the species of deeply recycled carbonates. Here, we present newly determined 87Sr/86Sr ratios of the <110 Ma basalts from Eastern China, and together with published Mg isotopic data we evaluate the species of recycled carbonates in the mantle and discuss their implication. The <110 Ma basalts display low δ26Mg values of ?0.60 to ?0.30‰ and relatively low initial 87Sr/86Sr ratios of 0.70328 to 0.70537, suggesting that their mantle source was hybridized by recycled carbonates with a light Mg isotopic composition which had more significant effects on Mg than Sr isotope ratios. Mg-Sr isotopic data indicate that the recycled carbonates consist of magnesite and aragonite, but the possibility of calcite and dolomite cannot be eliminated. Based on the carbonated peridotite solidus, the equilibrium line between dolomite and magnesite + aragonite, as well as the mantle adiabat, the initial melting depth of the carbonated mantle, the source region of the studied basalts, was constrained at ~300–360 km. Thus, the subducted depth of the west Pacific slab underlying the carbonated mantle and supplying recycled carbonates should be greater than ~300–360 km, consistent with the seismic tomography result that the west Pacific slab now stagnates in the mantle transition zone.  相似文献   
43.
Anomalously saline waters in Ocean Drilling Program Holes 1127, 1129, 1130, 1131 and 1132, which penetrate southern Australian slope sediments, and isotopic analyses of large benthic foraminifera from southern Australian continental shelf sediments, indicate that Pleistocene–Holocene meso‐haline salinity reflux is occurring along the southern Australian margin. Ongoing dolomite formation is observed in slope sediments associated with marine waters commonly exceeding 50‰ salinity. A well‐flushed zone at the top of all holes contains pore waters with normal marine trace element contents, alkalinities and pH values. Dolomite precipitation occurs directly below the well‐flushed zone in two phases. Phase 1 is a nucleation stage associated with waters of relatively low pH (ca 7) caused by oxidation of H2S diffusing upward from below. This dolomite precipitates in sediments < 80 m below the sea floor and has δ13C values consistent with having formed from normal sea water (? 1‰ to + 1‰ Vienna Pee Dee Belemnite). The Sr content of Phase 1 dolomite indicates that precipitation can occur prior to substantial metastable carbonate dissolution (< 300 ppm in Holes 1129 and 1127). Dolomite nucleation is interpreted to occur because the system is undersaturated with respect to the less stable minerals aragonite and Mg‐calcite, which form more readily in normal ocean water. Phase 2 is a growth stage associated with the dissolution of metastable carbonate in the acidified sea water. Analysis of large dolomite rhombs demonstrates that at depths > 80 m below the sea floor, Phase 2 dolomite grows on dolomite cores precipitated during Phase 1. Phase 2 dolomite has δ13C values similar to those of the surrounding bulk carbonate and high Sr values relative to Phase 1 dolomite, consistent with having formed in waters affected by aragonite and calcite dissolution. The nucleation stage in this model (Phase 1) challenges the more commonly accepted paradigm that inhibition of dolomitization by sea water is overcome by effectively increasing the saturation state of dolomite in sea water.  相似文献   
44.
In a multi‐scale approach to the study of the organic and mineral components in an active barrage‐type tufa system of southern Italy, neo‐formed deposits, in both natural depositional sites and on inorganic substrates placed in the stream for this study, were observed and compared through one year of monitoring. Dams and lobes representing the basic morpho‐facies of the deposits are composed of two depositional facies: vacuolar tufa (a mixture of phytoclastic and framestone tufa) and stromatolitic tufa (phytoherm boundstone tufa). Three petrographic components comprise both facies: micrite and microsparite, often forming peloidal to aphanitc, laminar and dendrolitic fabrics, and sparite, which occurs as isolated to coalescent fan‐shaped crystals forming botryoids or continuous crusts. All fabrics occurring in all depositional facies are organized into layers with a more or less well‐developed cyclicity, which has its best expression in stromatolitic lamination. The precipitation of all types of calcite (with Mg 1·0 to 3·2 mole % and Sr 0·5 to 0·8 mole %) takes place more or less constantly during all seasons, in spite of the low saturation state of the water (the saturation index range is 0·75 to 0·89) within the active depositional zone; the latter extends for a few hundred microns through the external surface of the deposit. The active depositional zone has a particular micro‐morphology composed of porous micro‐columns (50 to 150 μm in size), separated by interstitial channels. Mineral precipitation occurs upon both external surfaces and within internal cavities of the micro‐columns, while further point sites of precipitation occur suspended within the masses of cyanobacterial tufts. Sub‐spherical mineral units, ‘nano‐spheres’ (10 to 20 nm in diameter) are the basic biotic neo‐precipitate; they commonly form by replacing non‐living degrading organic matter and at point sites along the external surface of living cyanobacterial sheaths. Nano‐spheres agglutinate to form first rod‐shaped aggregates (100 to 200 nm) which then evolve into triads of fibres or polyhedral structures. Successively, both triads and polyhedral solids coalesce to form larger calcite crystals (mainly tetrahedrons tens of microns in size) that represent the fundamental bricks for the construction of the micro‐columns in the active depositional zone. Precipitation is attributed to the presence of a widespread biofilm that occurs in the active depositional zone; this is composed of a heterogeneous community comprising epilithic and endolithic filamentous cyanobacteria, green algae, unicellular prokaryotes, actinobacteria and fungi, with a variable amount of extracellular polymeric substances. No precipitation takes place where the biofilm is absent, indicating that the biological activities of the biofilm are crucial, with its living organisms and non‐living organic matter. Basic aggregates of neo‐precipitates do not form in association with any one particular type of organic matter substrate, but appear to be related to the seasonal temperature variation: polyhedral micro‐crystals mainly precipitate in the colder season, short triads in the intermediate seasons, and long triads in the warmest conditions. These three basic crystal aggregates have a petrographic counterpart, respectively, in the spar, microspar and micrite.  相似文献   
45.
As the product of a variety of sediment sources and sedimentation (and re‐sedimentation) and erosion processes, the geomorphology and sedimentology of carbonate slopes are highly variable. The purpose of this study is to describe sub‐bottom profiles and side‐scan sonar, multibeam and optical data acquired by an autonomous underwater vehicle to explore variability in geomorphological and sedimentological character of the present‐day platform‐marginal, uppermost slope environments (< 240 m water depth) on the north, open‐ocean facing flank of Little Bahama Bank, Bahamas. Although at time scales of greater than 100 ka this margin is progradational, the data illustrate a complex juxtaposition of erosional and depositional processes and features. Erosion is evidenced by two prominent escarpments (70 m and 120 m) that expose eroded, bedded rocky outcrops. These escarpments are interpreted to represent relict features, related to past sea‐level positions, although they still may be shedding debris. Aside from erosional remnants, sedimentation and active transport is indicated by several features, including active bedforms (especially above the 70 m escarpment, but ripples occur to depths of ca 200 m), several mass transport complexes that overlie and cover the lower escarpment, gravity flow deposits and rare slump features. Similarly, a thick (up to 20 m) onlapping sediment wedge, interpreted to be Holocene in age, suggests lateral accretion of the slope by more than 75 m in this period. Data illustrate that this open‐ocean margin is distinct from windward margins in the Bahamas, which typically include near‐vertical walls of erosion or bypass, flanked downdip by rubble and talus, and leeward margins, which have onlapping muddy wedges, but that lack marked terraces or escarpments. Collectively, the results provide perspectives into the nature and controls on complex geomorphological patterns of erosion and deposition in Holocene uppermost slope systems, concepts potentially applicable to ancient analogues.  相似文献   
46.
Crustose lichens are distributed extensively in karst areas in Southern China. They can be found on the surface of carbonate rocks. Through biophysical and biochemical processes, crustose lichens reform the subsurface of carbonate rocks and in the meanwhile change their physical and chemical properties: (1) the mechanical strength decreases by 17.04° on average (up to 33.2° ); (2) the chemical solution surface area increases from 28.26% to 75.36% (lichen microholes considered only); and (3) the water-holding capacity is greatly improved. Comparative field experiments between biokarst samples underneath crustose lichens and fresh rock samples with the same composition and texture show that the corrosional rate of carbonate rocks of the former is 1.264-1.643 times higher than that of the latter. Crustose lichens are considered as an activator of the surface corrosion of carbonate rocks.  相似文献   
47.
The Adriatic-Dinaridic carbonate platform (ADCP) was one of the largest and relatively well preserved Mesozoic platforms in the Mediterranean region (central Tethys). The peninsula Istria, in the northwestern part of the ADCP, is built up predominantly of shallow-water carbonates of the Middle Jurassic (Dogger) to Eocene age and, to a lesser extent, of Paleogene clastic deposits (flysch and calcareous breccia). This study focuses on a Lower Cretaceous (Barremian to Albian) succession of strata at five localities in western Istria. Stratigraphic determinations are based on identification of nine microfossil assemblages (benthic foraminifera and calcareous algae Dasycladales) and on using their taxa as index fossils. The age of strata with these microfossil assemblages, however, is questionable. Most of the age uncertainties are associated with a regional emersion, which occurred on the ADCP during the Aptian or close to the Aptian-Albian transition. It is unclear what portions of the Upper Aptian and/or Lower Albian are missing along this unconformity. A stable isotope study was conducted on homogenous micritic matrix samples in an attempt to resolve some of these uncertainties. Variations in carbon isotope compositions proved useful for stratigraphic correlation between the examined successions of strata, for improving their age determination, and for relating them to other coeval successions that span an important time interval of major oceanographic changes and carbon-cycle perturbations associated with the Early Aptian oceanic anoxic event (OAE 1a).  相似文献   
48.
在分析和总结前人对红藻石和蓝藻石研究成果基础上,结合岩石薄片显微镜下观察实例,发现在以往碳酸盐岩颗粒分类中没有红藻石和蓝藻石的合适位置。鉴于红藻石重要的成因意义和造礁作用,有必要明确红藻石的概念和归属。珊瑚藻本身极易钙化,经生物矿化作用最终保存下来的珊瑚藻屑一直放在生物碎屑中,而红藻石是由非固着的珊瑚藻构成的钙质独立结核,因此也可以被划分到生物碎屑中。蓝藻石作为蓝细菌钙化作用的产物,同时鉴于蓝藻石的广泛存在,把钙化蓝细菌形成的核形石命名为蓝藻石,这一重要概念从提出到现在一直被使用。然而蓝绿藻概念已变更为蓝细菌,蓝藻石的形成与藻类无关,显然将其称作蓝菌石更加确切。因此,应将红藻石和蓝藻石分别归为生物碎屑和核形石当中,并用新的术语蓝菌石替代蓝藻石。其意义在于使红藻石和蓝藻石的概念及归属更为规范,并为碳酸盐岩颗粒的深入研究提供有益线索。  相似文献   
49.
为了探索水合物背景下沉积物中自生矿物响应,对采自综合大洋钻探计划(IODP)311航次沉积物中自生碳酸盐岩颗粒进行了矿物组成、形貌特征和碳、氧稳定同位素特征等研究。X光粉晶衍射(XRD)和扫描电镜(SEM)结果显示碳酸盐岩颗粒的主要矿物成分是铁白云石和方解石,呈多孔状结核和不规则状集合体产出。碳酸盐岩颗粒的碳稳定同位素δ13CPDB低至-41.50‰,证实其碳源源自甲烷,其成因与甲烷厌氧氧化过程有关,印证了研究区存在海底甲烷渗漏现象,是甲烷水合物赋存区重要的识别标志之一。碳酸盐岩颗粒的氧稳定同位素δ18OPDB总体上随着沉积物深度增加而减小,可能指示沉积物的背景温度由下而上(从早到晚)逐渐降低。研究结果提供了现代海洋天然气水合物背景下沉积物中自生碳酸盐岩的碳、氧稳定同位素记录,对于寻找我国海域天然气水合物资源,探索地史时期古海洋沉积物中类似的甲烷事件记录具有重要的理论和实践指导意义。  相似文献   
50.
Ordovician fracture-cavity carbonate reservoir beds are the major type of producing formations in the Tahe oilfield, Tarim Basin. The seismic responses of these beds clearly changes depending on the different distance of the fracture-cavity reservoir bed from the top of the section. The seismic reflection becomes weak or is absent when the fracture-cavity reservoir beds are less than 20 ms below the top Ordovician. The effect on top Ordovician reflection became weaker with deeper burial of fracture-cavity reservoir beds but the developed deep fracture-cavity reservoir beds caused stronger reflection in the interior of the Ordovician. This interior reflection can be divided into strong long-axis, irregular and bead string reflections, and was present 80 ms below the top Ordovician. Aimed at understanding reflection characteristics, the spectral decomposition technique, which uses frequency to "tune-in" bed thickness, was used to predict Ordovician fracture-cavity carbonate formations in the Tahe oilfield. Through finely adjusting the processing parameters of spectral decomposition, it was found that the slice at 30 Hz of the tuned data cube can best represent reservoir bed development. Two large N-S-trending strong reflection belts in the mid-western part of the study area along wells TK440- TK427-TK417B and in the eastern part along wells TK404-TK409 were observed distinctly on the 30 Hz slice and 4-D time-frequency data cube carving. A small N-S trending reflection belt in the southern part along wells T403-TK446B was also clearly identified. The predicted reservoir bed development area coincides with the fracture-cavities connection area confirmed by drilling pressure testing results. Deep karst cavities occur basically in three reservoir bed-development belts identified by the Ordovician interior strong reflection. Spectral decomposition proved to be a useful technique in identifying fracture-cavity reservoir beds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号