首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3971篇
  免费   802篇
  国内免费   2307篇
测绘学   18篇
大气科学   85篇
地球物理   735篇
地质学   5334篇
海洋学   437篇
天文学   15篇
综合类   141篇
自然地理   315篇
  2024年   40篇
  2023年   95篇
  2022年   182篇
  2021年   228篇
  2020年   236篇
  2019年   266篇
  2018年   250篇
  2017年   288篇
  2016年   265篇
  2015年   273篇
  2014年   315篇
  2013年   301篇
  2012年   337篇
  2011年   335篇
  2010年   259篇
  2009年   294篇
  2008年   309篇
  2007年   311篇
  2006年   331篇
  2005年   304篇
  2004年   256篇
  2003年   200篇
  2002年   182篇
  2001年   175篇
  2000年   154篇
  1999年   123篇
  1998年   140篇
  1997年   166篇
  1996年   108篇
  1995年   81篇
  1994年   89篇
  1993年   43篇
  1992年   39篇
  1991年   29篇
  1990年   27篇
  1989年   14篇
  1988年   14篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
排序方式: 共有7080条查询结果,搜索用时 125 毫秒
191.
Ressi is a small (2.4 ha) forested catchment located in the Italian pre-Alps. The site became an experimental catchment to investigate the water fluxes in the soil–plant–atmosphere continuum and the impact of vegetation on runoff generation in 2012. The elevation of the catchment ranges from 598 to 721 m a.s.l. and the climate is humid temperate. The bedrock consists of rhyolites and dacites; the soil is a Cambisol. The catchment is covered by a dense forest, dominated by beech, chestnut, maple, and hazel trees. The field set up includes measurements of the rainfall in an open area, streamflow at the outlet, soil moisture at various depths and locations, and depth to water table in six piezometers at a 5- or 10-min interval. Samples of precipitation, stream water, shallow groundwater and soil water are collected monthly for tracer analysis (stable isotopes (2H and 18O), electrical conductivity and major ions), and during selected rainfall–runoff events to determine the contribution of the various sources to runoff. Since 2017, soil and plant water samples have been collected to determine the sources of tree transpiration. Data collected in the period 2012–2016 are publicly available. Data collection is ongoing, and the data set is expected to be updated on an annual basis to include the most recent measurements.  相似文献   
192.
James M. Buttle 《水文研究》2016,30(24):4644-4653
The potential for dynamic storage to serve as a metric of basin behaviour was assessed using data from five drainage basins with headwaters on the thick sand and gravel deposits of the Oak Ridges Moraine in southern Ontario, Canada. Dynamic storage was directly correlated with the ratio of variability of δ2H in streamflow relative to that in precipitation. This ratio has previously been shown to be inversely related to basin mean transit time (MTT), suggesting an inverse relationship between dynamic storage and MTT for the study basins. Dynamic storage was also directly correlated with interannual variability in stream runoff, baseflow and baseflow:runoff ratio, implying that basins with smaller dynamic storage have less interannual variability in their streamflow regimes. These preliminary results suggest that dynamic storage may serve as a readily derived and useful metric of basin behaviour for inter‐basin comparisons. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
193.
Migmatites are predominant in the North Qinling (NQ) orogen, but their formation ages are poorly constrained. This paper presents a combined study of cathodoluminescence imaging, U–Pb age, trace element and Hf isotopes of zircon in migmatites from the NQ unit. In the migmatites, most zircon grains occur as new, homogeneous crystals, while some are present as overgrowth rims around inherited cores. Morphological and trace element features suggest that the zircon crystals are metamorphic and formed during partial melting. The inherited cores have oscillatory zoning and yield U–Pb ages of c. 900 Ma, representing their protolith ages. The early Neoproterozoic protoliths probably formed in an active continental margin, being a response to the assembly of the supercontinent Rodinia. The migmatite zircon yields Hf model ages of 1911 ± 20 to 990 ± 22 Ma, indicating that the protoliths were derived from reworking of Palaeoproterozoic to Neoproterozoic crustal materials. The anatexis zircon yields formation ages ranging from 455 ± 5 to 420 ± 4 Ma, with a peak at c. 435 Ma. Combined with previous results, we suggest that the migmatization of the NQ terrane occurred at c. 455–400 Ma. The migmatization was c. 50 Ma later than the c. 490 Ma ultra‐high‐P (UHP) metamorphism, indicating that they occurred in two independent tectonic events. By contrast, the migmatization was coeval with the granulite facies metamorphism and the granitic magmatism in the NQ unit, which collectively argue for their formation due to the northward subduction of the Shangdan Ocean. UHP rocks were distributed mainly along the northern margin and occasionally in the inner part of the NQ unit, indicating that they were exhumed along the northern edge and detached from the basement by the subsequent migmatization process.  相似文献   
194.
Haloxylon ammodendron is a desert shrub used extensively in China for restoring degraded dry lands. An understanding of the water source used by H. ammodendron plantations is critical achieving sustainable vegetation restoration. We measured mortality, shoot size, and rooting depth in 5‐, 10‐, 20‐, and 40‐year‐old H. ammodendron plantations. We examined stable isotopic ratios of oxygen (δ18O) in precipitation, groundwater, and soil water in different soil layers and seasons, and in plant stem water to determine water sources at different shrub ages. We found that water acquisition patterns in H. ammodendron plantations differed with plantation age and season. Thus, the main water source for 5‐year‐old shrubs was shallow soil water. Water sources of 10‐year‐old shrubs shifted depending on the soil water conditions during the season. Although their tap roots could absorb deep soil water, the plantation main water sources were from soil water, and about 50% of water originated from shallow and mid soil. This pattern might occur because main water sources in these plantations were changeable over time. The 20‐ and 40‐year‐old shrubs acquired water mainly from permanent groundwater. We conclude that the main water source of a young H. ammodendron plantation was soil water recharged by precipitation. However, when roots reached sufficient depth, water originated mainly from the deep soil water, especially in the dry season. The deeply rooted 20‐ and 40‐year‐old shrubs have the ability to exploit a deep and reliable water source. To achieve sustainability in these plantations, we recommend a reduction in the initial density of H. ammodendron in the desert‐oasis ecotone to decelerate the consumption of shallow soil water during plantation establishment.  相似文献   
195.
A long‐term study of O, H and C stable isotopes has been undertaken on river waters across the 7000‐km2 upper Thames lowland river basin in the southern UK. During the period, flow conditions ranged from drought to flood. A 10‐year monthly record (2003–2012) of the main River Thames showed a maximum variation of 3‰ (δ18O) and 20‰ (δ2H), although interannual average values varied little around a mean of –6.5‰ (δ18O) and –44‰ (δ2H). A δ2H/δ18O slope of 5.3 suggested a degree of evaporative enrichment, consistent with derivation from local rainfall with a weighted mean of –7.2‰ (δ18O) and –48‰ (δ2H) for the period. A tendency towards isotopic depletion of the river with increasing flow rate was noted, but at very high flows (>100 m3/s), a reversion to the mean was interpreted as the displacement of bank storage by rising groundwater levels (corroborated by measurements of specific electrical conductivity). A shorter quarterly study (October 2011–April 2013) of isotope variations in 15 tributaries with varying geology revealed different responses to evaporation, with a well‐correlated inverse relationship between Δ18O and baseflow index for most of the rivers. A comparison with aquifer waters in the basin showed that even at low flow, rivers rarely consist solely of isotopically unmodified groundwater. Long‐term monitoring (2003–2007) of carbon stable isotopes in dissolved inorganic carbon (DIC) in the Thames revealed a complex interplay between respiration, photosynthesis and evasion, but with a mean interannual δ13C‐DIC value of –14.8 ± 0.5‰, exchange with atmospheric carbon could be ruled out. Quarterly monitoring of the tributaries (October 2011–April 2013) indicated that in addition to the aforementioned factors, river flow variations and catchment characteristics were likely to affect δ13C‐DIC. Comparison with basin groundwaters of different alkalinity and δ13C‐DIC values showed that the origin of river baseflow is usually obscured. The findings show that long‐term monitoring of environmental tracers can help to improve the understanding of how lowland river catchments function. Copyright © NERC 2015. Hydrological Processes © 2015 John Wiley & Sons, Ltd.  相似文献   
196.
Time series of hydrogen and oxygen stable isotope ratios (δ2H and δ18O) in rivers can be used to quantify groundwater contributions to streamflow, and timescales of catchment storage. However, these isotope hydrology techniques rely on distinct spatial or temporal patterns of δ2H and δ18O within the hydrologic cycle. In New Zealand, lack of understanding of spatial and temporal patterns of δ2H and δ18O of river water hinders development of regional and national-scale hydrological models. We measured δ2H and δ18O monthly, together with river flow rates at 58 locations across New Zealand over a two-year period. Results show: (a) general patterns of decreasing δ2H and δ18O with increasing latitude were altered by New Zealand's major mountain ranges; δ2H and δ18O were distinctly lower in rivers fed from higher elevation catchments, and in eastern rain-shadow areas of both islands; (b) river water δ2H and δ18O values were partly controlled by local catchment characteristics (catchment slope, PET, catchment elevation, and upstream lake area) that influence evaporation processes; (c) regional differences in evaporation caused the slope of the river water line (i.e., the relationship between δ2H and δ18O in river water) for the (warmer) North Island to be lower than that of the (cooler, mountain-dominated) South Island; (d) δ2H seasonal offsets (i.e., the difference between seasonal peak and mean values) for individual sites ranged from 0.50‰ to 5.07‰. Peak values of δ18O and δ2H were in late summer, but values peaked 1 month later at the South Island sites, likely due to greater snow-melt contributions to streamflow. Strong spatial differences in river water δ2H and δ18O caused by orographic rainfall effects and evaporation may inform studies of water mixing across landscapes. Generally distinct seasonal isotope cycles, despite the large catchment sizes of rivers studied, are encouraging for transit time analysis applications.  相似文献   
197.
The Hammond Hill Research Catchment (HH) is a small (120 ha), temperate, second order tributary to Six Mile Creek, Cayuga Lake, and the Great Lakes (42.42°, −76.32°). The HH has been monitored since January 2017 for the purpose of understanding how recent infiltration mixes with antecedent soil water on hillslope forest floors and the spatial and temporal patterns of Root Water Uptake (RWU) by temperate northeastern US tree species (eastern hemlock [Tsuga canadensis], American beech [Fagus grandifolia], and sugar maple [Acer saccharum]). These data are informing us about the hydrologic consequences of anticipated tree species composition change and supporting the development of more refined ecohydrological models. The glaciated catchment is underlain by a shallow confining siltstone layer (1–1.5 m depth) and densely covered with an approximately 60 year old regrowth mixed species forest of hemlock, beech, and other deciduous tree species common to the northeastern US. Current datasets from the HH include precipitation snow water equivalent, discharge, and associated isotopic water compositions, δ2H & δ18O. Measurements of (top 10 cm) soil water content, as well as bulk soil water and hemlock and beech xylem isotopic compositions are made at several locations across a topographic wetness gradient. The near-term role of the HH is to support an understanding of the environmental and ecological drivers of plant RWU competition. All data from the HH are publicly available.  相似文献   
198.
Riparian plants can adapt their water uptake strategies based on climatic and hydrological conditions within a river basin. The response of cold-alpine riparian trees to changes in water availability is poorly understood. The Lhasa River is a representative cold-alpine river in South Tibet and an under-studied environment. Therefore, a 96 km section of the lower Lhasa River was selected for a study on the water-use patterns of riparian plants. Plant water, soil water, groundwater and river water were measured at three sites for δ18O and δ2H values during the warm-wet and cold-dry periods in 2018. Soil profiles differed in isotope values between seasons and with the distance along the river. During the cold-dry period, the upper parts of the soil profiles were significantly affected by evaporation. During the warm-wet period, the soil profile was influenced by precipitation infiltration in the upper reaches of the study area and by various water sources in the lower reaches. Calculations using the IsoSource model indicated that the mature salix and birch trees (Salix cheilophila Schneid. and Betula platyphylla Suk.) accessed water from multiple sources during the cold-dry period, whereas they sourced more than 70% of their requirement from the upper 60–80 cm of the soil profile during the warm-wet period. The model indicated that the immature rose willow tree (Tamarix ramosissima Ledeb) accessed 66% of its water from the surface soil during the cold-dry period, but used the deeper layers during the warm-wet period. The plant type was not the dominant factor driving water uptake patterns in mature plants. Our findings can contribute to strategies for the sustainable development of cold-alpine riparian ecosystems. It is recommended that reducing plantation density and collocating plants with different rooting depths would be conducive to optimal plant growth in this environment.  相似文献   
199.
Soil moisture is essential for vegetation restoration in arid and semi-arid regions. Ascertaining the vertical distribution and transportation of soil moisture under different vegetation types has a profound effect on the ecological construction. In this study, the soil moisture at a depth of 500 cm for four typical vegetation types, including Robinia pseudoacacia, Caragana korshinskii, Stipa bungeana, and corn, were investigated and compared in the Zhifanggou watershed of the Loess plateau. Additionally, hydrogen and oxygen stable isotopes were detected to identify the transport mechanism of soil moisture. The results showed vertical distribution and transportation of soil moisture were different under different vegetation types. Depth-averaged soil moisture under S. bungeana and corn generally increased along the profile, while C. korshinskii and R. pseudoacacia showed weakly increasing and relatively stable after an obvious decreasing trend (0–40 cm). The soil moisture under R. pseudoacacia was lower than that under other vegetation types, especially in deep layer. However, the effect of R. pseudoacacia on soil moisture in the topsoil (< 30 cm) could be positive. For R. pseudoacacia (160–500 cm), C. korshinskii (0–500 cm), and S. bungeana (0–100 cm), the soil moisture declined with increased in vegetation age. Planting arbor species such as R. pseudoacacia intensified the decline of soil moisture on the Loess Plateau. The capacity of evaporation fractionation of soil moisture followed the sequence: corn > S. bungeana > R. pseudoacacia > C. korshinskii. The δ18O values in soil water fluctuated across the profile. The δ18O values changed sharply in upper layer and generally remained stable in deep layer. However, in middle layer, the vertical distribution characteristics of the δ18O values were different under different vegetation types. We estimated that piston flow was the main mode of precipitation infiltration, and the occurrence of preferential flow was related to vegetation types. These results were helpful to improve the understanding of the response of deep soil moisture to vegetation restoration and inform practices for sustainable water management.  相似文献   
200.
Characterization of spatial and temporal variability of stable isotopes (δ18O and δ2H) of surface waters is essential to interpret hydrological processes and establish modern isotope–elevation gradients across mountainous terrains. Here, we present stable isotope data for river waters across Kyrgyzstan. River water isotopes exhibit substantial spatial heterogeneity among different watersheds in Kyrgyzstan. Higher river water isotope values were found mainly in the Issyk‐Kul Lake watershed, whereas waters in the Son‐Kul Lake watershed display lower values. Results show a close δ18O–δ2H relation between river water and the local meteoric water line, implying that river water experiences little evaporative enrichment. River water from the high‐elevation regions (e.g., Naryn and Son‐Kul Lake watershed) had the most negative isotope values, implying that river water is dominated by snowmelt. Higher deuterium excess (average d = 13.9‰) in river water probably represents the isotopic signature of combined contributions from direct precipitation and glacier melt in stream discharge across Kyrgyzstan. A significant relationship between river water δ18O and elevation was observed with a vertical lapse rate of 0.13‰/100 m. These findings provide crucial information about hydrological processes across Kyrgyzstan and contribute to a better understanding of the paleoclimate/elevation reconstruction of this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号