An open reading frame (lcn61) of lymphocystis disease virus China (LCDV-cn), probably responsible for encoding putative zinc-finger proteins was amplified
and inserted into pET24a (+) vector. Then it expressed in E. coli BL21 (DE3), and His-tag fusion protein of high yield was obtained. It was found that the fusion protein existed in E. coli mainly as inclusion bodies. The bioinformatics analysis indicates that LCN61 is C2H2 type zinc-finger protein containing
four C2H2 zinc-finger motifs. This work provides a theory for functional research of lcn61 gene.
Supported by High Technology Research and Development Program of China (863 Program, No. 2006AA100309) 相似文献
FluBiDi is a two-dimensional model created to simulate real events that can take days and months, as well as short events (minutes or hours) and inclusive laboratory tests. To verify the robustness of FluBiDi, it was tested using a previous study with both designed and real digital elevation models. The results highlight good agreement between the models (i.e. Mike Flood, SOBEK, ISIS 2D, and others) tested and FluBiDi (around 90% for a specific instant and 95% for the complete time simulation). In the simulated hydrographs, the discharge peak value, time to peak, and water level results were accurate, reproducing them with an error of less than 5%. The velocity differences observed in a couple of tests in FluBiDi were associated with very short periods of time (seconds). However, FluBiDi is highly accurate for simulating floods under real topographical conditions with differences of around 2 cm when water depth is around 150 cm. The average water depth and velocities are precise, and the model describes with high accuracy the pattern and extent of floods. FluBiDi has the capability to be adjusted to different types of events and only requires limited input data. 相似文献
Standing, propagating or oscillating shock waves are common in accretion and winds around compact objects. We study the topology of all possible solutions using the pseudo-Kerr geometry. We present the parameter space spanned by the specific energy and angular momentum and compare it with that obtained from the full general relativity to show that the potential can work satisfactorily in fluid dynamics also, provided the polytropic index is suitably modified. We then divide the parameter space depending on the nature of the solution topology. We specifically study the nature of the standing Rankine–Hugoniot shocks. We also show that as the Kerr parameter is increased, the shock location generally moves closer to the black hole. In future, these solutions can be used as guidelines to test numerical simulations around compact objects. 相似文献