The ribosomal DNA internal transcribed spacer (ITS) region is a useful genomic region for understanding evolutionary and genetic relationships. In the current study, the molecular phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) was performed using the nucleotide sequences of the nuclear ITS region in nine species of this family. The sequences were obtained from the scallop species Argopecten irradians, Mizuhopecten yessoensis, Amusium pleuronectes and Mimachlamys nobilis, and compared with the published sequences of Aequipecten opercularis, Chlamys farreri, C. distorta, M. varia, Pecten maximus, and an outgroup species Perna viridis. The molecular phylogenetic tree was constructed by the neighbor-joining and maximum parsimony methods. Phylogenetic analysis based on ITS1, ITS2, or their combination always yielded trees of similar topology. The results support the morphological classifications of bivalve and are nearly consistent with classification of two subfamilies (Chlamydinae and Pectininae) formulated by Waller. However, A. irradians, together with A. opercularis made up of genera Amusium, evidences that they may belong to the subfamily Pectinidae. The data are incompatible with the conclusion of Waller who placed them in Chlamydinae by morphological characteristics. These results provide new insights into the evolutionary relationships among scallop species and contribute to the improvement of existing classification systems. 相似文献
A recent drilling at Borenshult near Motala resulted in discovery of the stratigraphically most complete succession through the upper Darriwilian–Rhuddanian interval known in Östergötland. The approximately 70 m long drillcore succession is subdivided into eight formations, the oldest being the late Darriwilian Furudal Limestone and the youngest being the Rhuddanian Motala Formation. Conodonts are used for a detailed biostratigraphic classification of the Borenshult drillcore into three subzones of the Pygodus serra Zone, two subzones of the Pygodus anserinus Zone, and three subzones of the Amorphognathus tvaerensis Zone. The base of the Amorphognathus superbus Zone is taken to be ∼10 m above the Kinnekulle K-bentonite, that of the Amorphognathus ordovicicus just below the Fjäcka Shale, and that of the Ozarkodina hassi Zone at the base of the Middle Member of the Loka Formation. Because of its unique lithology and paleontology and its wide geographic occurrence, this member is formally named herein the Skultorp Member. The previously uncertain stratigraphical position of the internationally known “Borenshult fauna” is shown to correlate with the Skultorp Member. A regional comparison of the Borenshult drillcore succession shows it to be most similar to coeval successions in Västergötland and Dalarna but there are some significant regional differences. The average rate of net rock accumulation during late Darriwilian and Sandbian time is calculated to be ∼3–4 mm/ka. 相似文献
The Triassic?Jurassic (Tr?J) boundary marks a major extinction event, which (~200 Ma) resulted in global extinctions of fauna and flora both in the marine and terrestrial realms. There prevail great challenges in determining the exact location of the terrestrial Tr?J boundary, because of endemism of taxa and the scarcity of fossils in terrestrial settings leading to difficulties in linking marine and terrestrial sedimentary successions. Investigation based on palynology and bivalves has been carried out over a 1113 m thick section, which is subdivided into 132 beds, along the Haojiagou valley on the southern margin of the Junggar Basin of the northern Xinjiang, northwestern China. The terrestrial Lower Jurassic is conformably resting on the Upper Triassic strata. The Upper Triassic covers the Huangshanjie Formation overlaid by the Haojiagou Formation, while the Lower Jurassic comprises the Badaowan Formation followed by the Sangonghe Formation. Fifty six pollen and spore taxa and one algal taxon were identified from the sediments. Based on the key-species and abundance of spores and pollen, three zones were erected: the Late Triassic (Rhaetian) Aratrisporites?Alisporites Assemblage, the Early Jurassic (Hettangian) Perinopollenites?Pinuspollenites Assemblage, and the Sinemurian Perinopollenites?Cycadopites Assemblage. The Tr?J boundary is placed between bed 44 and 45 coincident with the boundary between the Haojiagou and Badaowan formations. Beds with Ferganoconcha (?), Unio?Ferganoconcha and Waagenoperna?Yananoconcha bivalve assemblages are recognized. The Ferganoconcha (?) bed is limited to the upper Haojiagou Formation, Unio?Ferganoconcha and Waagenoperna?Yananoconcha assemblages are present in the middle and upper members of the Badaowan Formation. The sedimentary succession is interpreted as terrestrial with two mainly lake deposit intervals within Haojiagou and Badaowan formations, yielding fresh water algae and bivalves. However, the presence of brackish water algae Tasmanites and the marine?littoral facies bivalve Waagenoperna from the Badaowan Formation indicate that the Junggar Basin was influenced by sea water caused by transgressions from the northern Tethys, during the Sinemurian. 相似文献