全文获取类型
收费全文 | 298篇 |
免费 | 63篇 |
国内免费 | 244篇 |
专业分类
地球物理 | 18篇 |
地质学 | 570篇 |
海洋学 | 1篇 |
综合类 | 11篇 |
自然地理 | 5篇 |
出版年
2024年 | 6篇 |
2023年 | 10篇 |
2022年 | 10篇 |
2021年 | 21篇 |
2020年 | 20篇 |
2019年 | 25篇 |
2018年 | 21篇 |
2017年 | 18篇 |
2016年 | 22篇 |
2015年 | 29篇 |
2014年 | 24篇 |
2013年 | 30篇 |
2012年 | 36篇 |
2011年 | 23篇 |
2010年 | 16篇 |
2009年 | 16篇 |
2008年 | 11篇 |
2007年 | 28篇 |
2006年 | 20篇 |
2005年 | 17篇 |
2004年 | 22篇 |
2003年 | 10篇 |
2002年 | 9篇 |
2001年 | 14篇 |
2000年 | 17篇 |
1999年 | 23篇 |
1998年 | 15篇 |
1997年 | 18篇 |
1996年 | 6篇 |
1995年 | 10篇 |
1994年 | 13篇 |
1993年 | 7篇 |
1992年 | 4篇 |
1991年 | 10篇 |
1990年 | 6篇 |
1989年 | 6篇 |
1988年 | 3篇 |
1987年 | 6篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
排序方式: 共有605条查询结果,搜索用时 12 毫秒
81.
芙蓉锡矿田骑田岭花岗岩黑云母矿物化学组成及其对锡成矿的指示意义 总被引:6,自引:2,他引:6
芙蓉锡矿田骑田岭复式岩体主要由早阶段角闪石黑云母花岗岩和晚阶段黑云母花岗岩组成.电子探针分析结果表明角闪石黑云母花岗岩中的黑云母属于铁黑云母,黑云母花岗岩中的黑云母属于铁叶云母.相对于黑云母花岗岩,角闪石黑云母花岗岩中黑云母的MgO、TiO2含量偏高,Al2O3含量偏低.矿物化学研究结果显示,角闪石黑云母花岗岩中黑云母的结晶温度、氧逸度(logfO2)分别为680℃~740℃、-16.00~-15.31,黑云母花岗岩中黑云母的结晶温度、氧逸度分别为530℃~650℃、-19.20~-17.50.从角闪石黑云母花岗岩到黑云母花岗岩,岩浆结晶温度和氧逸度逐渐降低.与花岗岩有关的共存流体性质的研究发现,与角闪石黑云母花岗岩共存的热液流体log(fH2O/fHF)fluid,log(fH2O/fHCl)fluid,log(fHF/fHCl)fiuid值分别为4.22~4.39,2.78~3.24,-1.82~-1.73,而与黑云母花岗岩共存的热液流体log(fH2O/fHF)fluid,log(fH2OfHCl)fluid,log(fHF/fHCl)fluid值分别为3.27~3.53,2.85~3.22,-0.75~-0.22,可见与两种岩石类型共存热液流体的性质存在明显差异,且热液中Cl、Sn含量变化与岩浆结晶分异指数呈正相关关系.骑田岭岩体从角闪石黑云母花岗岩到黑云母花岗岩,随着岩浆的演化.岩浆结晶期后分异出的热液流体向富Cl和Sn方向演化.芙蓉锡矿田的成矿流体应主要来源于黑云母花岗岩岩浆结晶期后分异出的岩浆热液. 相似文献
82.
Alfons M. van den Kerkhof Geoffrey H. Grantham 《Contributions to Mineralogy and Petrology》1999,137(1-2):115-132
In the Port Edward area of southern Kwa-Zulu Natal, South Africa, charnockitic aureoles up to 10 m in width in the normally
garnetiferous Nicholson's Point Granite, are developed adjacent to intrusive contacts with the Port Edward Enderbite and anhydrous
pegmatitic veins. Mineralogical differences between the country rock and charnockitic aureole suggest that the dehydration
reaction Bt + Qtz → Opx + Kfs + H2O and the reaction of Grt + Qtz → Opx + Pl were responsible for the charnockitization. The compositions of fluid inclusions
show systematic variation with: (1) the Port Edward Enderbite being dominated by CO2 and N2 fluid inclusions; (2) the non-charnockitized granite by saline aqueous inclusions with 18–23 EqWt% NaCl; (3) the charnockitic
aureoles by low-salinity and pure water inclusions (<7 EqWt% NaCl); (4) the pegmatites by aqueous inclusions of various salinity
with minor CO2. As a result of the thermal event the homogenization temperatures of the inclusions in charnockite show a much larger range
(up to 390 °C) compared to the fluid inclusions in granite (mostly <250 °C). Contrary to fluid-controlled charnockitization
(brines, CO2) which may have taken place along shear zones away from the intrusive body, the present “proximal” charnockitized granite
formed directly at the contact with enderbite. The inclusions indicate contact metamorphism induced by the intrusion of “dry”
enderbitic magma into “wet” granite resulting in local dehydration. This was confirmed by cathodoluminescence microscopy showing
textures indicative for the local reduction of structural water in the charnockite quartz. Two-pyroxene thermometry on the
Port Edward Enderbite suggests intrusion at temperatures of ∼1000–1050 °C into country rock with temperature of <700 °C. The
temperature of aureole formation must have been between ∼700 °C (breakdown of pyrite to form pyrrhotite) and ∼1000 °C. Charnockitization
was probably controlled largely by heat related to anhydrous intrusions causing dehydration reactions and resulting in the
release and subsequent trapping of dehydration fluids. The salinity of the metamorphic fluid in the contact zones is supposed
to have been higher at an early stage of contact metamorphism, but it has lost its salt content by K-metasomatic reactions
and/or the preferential migration of the saline fluids out of the contact zones towards the enderbite. The low water activity
inhibited the localized melting of the granite. Mineral thermobarometry suggests that after charnockite aureole genesis, an
isobaric cooling path was followed during which reequilibration of most of the aqueous inclusions occurred.
Received: 8 November 1998 / Accepted: 21 June 1999 相似文献
83.
赣中周潭群石榴石、斜长石和黑云母微区化学成分特征及其地球动力学意义 总被引:5,自引:0,他引:5
周潭群变质岩中石榴石、斜长石和黑云母微区化学成分变化明显,石榴石变斑晶具典型的生长环带,由晶体中心向两侧边缘XMg、XFe值以光滑曲线递增,XCu、XMn值以光滑曲线递减,反映其增温过程;晶体最边缘的化学成分反映变质峰期的温度条件。通过石榴石变斑晶生长环带剖面分析,应用Grt-Bi温度计和GASP压力计,确定本区变质作用PT轨迹为顺时针形式,发生于大陆碰撞造山带环境。 相似文献
84.
The >1800 km long Coast Mountains–North Cascades orogen of the Canadian Cordillera and north-western US developed as a continental magmatic arc. Metamorphic rocks in the orogen contain widespread evidence for burial of supracrustal rocks to depths of c. 40 km, followed by nearly isothermal decompression to depths of <10 km. Near many shallowly-emplaced, mid-Cretaceous plutons, low-pressure contact metamorphic effects were overprinted by high-pressure regional metamorphic minerals and textures, as evidenced by kyanite±staurolite pseudomorphs after andalusite in metapelitic rocks. Therefore, near-pluton rocks record the loading history of the orogen. Metapelitic rocks not associated with plutons only preserve evidence for high-pressure conditions and/or high-temperature decompression, as indicated, for example, by sillimanite and cordierite after kyanite and garnet, respectively. Petrological evidence for burial and decompression is therefore recorded in different rocks. Various regions of the orogen differ in timing of metamorphism, the overall shape of P–T paths and the relative timing and regional extent of the high-pressure event, but most of these data and observations are consistent with thrusting and/or pure shear thickening as primary loading mechanisms throughout the orogen, as opposed to magma-dominated loading. This interpretation is further supported by comparison with thermal models, which demonstrate that the P–T paths are consistent with simultaneous thrusting and folding at a high initial geothermal gradient (35–40 °C km?1) in much of the orogen. A high geothermal gradient supports tectonic models invoking intra-arc contraction and suggests that magmatism played an important role in regional temperature-time paths. This tectonic-thermal history may be typical of other contractional orogens and illustrates the importance of large vertical displacement of crust in magmatic arcs. 相似文献
85.
Three types of zircon occur in a complexly deformed and variably migmatized quartzofeldspathic gneiss from the Reynolds Range, central Australia. The oldest type is inherited from the granitic precursor of the gneiss, and is overgrown by a second group of zircon grains that formed during prograde, granulite facies metamorphism. Partial melting of the gneiss resulted in solution of both the inherited and metamorphic zircon. No new zircon growth accompanied crystallization of the partial melt, suggesting loss of zirconium–rich residual fluids. Hydrous, amphibolite facies retrogression of the gneiss and its migmatized variants during late shearing produced new, idiomorphic zircon in both the shear zone and its wall rocks.
Important implications of this study are that (i) zircon has a tendency to dissolve if it comes into direct contact with a melt produced from anhydrous biotite breakdown in a quartzofeldspathic granulite, (ii) melt crystallization is not necessarily accompanied by zircon growth, and (iii) euhedral zircon can grow from a hydrous fluid phase under subsolidus, amphibolite facies conditions, e.g. within shear zones. 相似文献
Important implications of this study are that (i) zircon has a tendency to dissolve if it comes into direct contact with a melt produced from anhydrous biotite breakdown in a quartzofeldspathic granulite, (ii) melt crystallization is not necessarily accompanied by zircon growth, and (iii) euhedral zircon can grow from a hydrous fluid phase under subsolidus, amphibolite facies conditions, e.g. within shear zones. 相似文献
86.
R. KUNDIG 《Journal of Metamorphic Geology》1989,7(1):43-55
ABSTRACT In the main Himalayan range in the Ladakh-Zanskar area, domal structures have been observed at structurally deeper levels in the tectonic unit of the Higher Himalayan Crystalline. Their formation occurred during a second, temperature-dominated phase (M2) of high-grade regional metamorphism, characterized by the semipelitic paragenesis of sillimanite-K-feldspar and incipient anatexis. The doming event reveals a local system of synmetamorphic uplift superimposed on a regional system of northeast-southwest trending compression. In the main Himalayan range the development of the dominant S2 foliation is related to deformation during the doming phase, which started early in the M2 event. The deformation propagated continuously north-east and south-west with time. In the north-east, on the northern slopes of the main Himalayan range, this deformation is expressed by extensional shear movements of the upper tectonic levels finally leading to the late- to postmetamorphic normal fault system of the Zanskar shear zone. Towards the south-west, deformation is expressed by compressional movements, e.g. at the Main Central Thrust (MCT) in the Kishtwar window area. The observed compression and extension is inferred to relate to an increased uplift of the domal bulges of the tectonic Kishtwar window and of the whole main Himalayan range. 相似文献
87.
论德尔尼黄铁矿型铜钴矿床的地质特征及其与塞浦路斯铜矿的区别 总被引:2,自引:0,他引:2
通过对德尔尼铜钴矿床与塞浦路斯铜矿的对比,进一步明确了德尔尼铜钴矿床为与印支期黑云花岗岩有成因联系的岩浆热液矿床。矿区的超基性岩或超基性火山角砾岩都是不含矿的,与矿床无成因联系;底辟上升侵位也不存在。将德尔尼铜钴矿床作为火山岩块状硫化物矿床系列中的最基性端员缺乏依据。 相似文献
88.
吐哈盆地东缘泥盆纪花岗岩的确定及其地质意义 总被引:6,自引:3,他引:6
通过对吐哈盆地东缘四顶黑山超单元中的黑云母花岗岩进行锆石SHRIMPU-Pb定年,获得(386±5)Ma(MSWD=1.01)的206Pb/238U表面年龄。根据该岩体的岩石学和锆石的矿物学特征,将此年龄解释为该岩体的侵位年龄。根据这一定年结果和该花岗岩与围岩(被当地地质工作者归入古元古代星星峡群的变质岩)具有相同的构造变形特征,结合已有的年代学、岩石化学和相关地质资料,可以得出如下初步结论:①吐哈盆地东缘与南缘为同一古生代活动陆缘的不同部分,其形成演化与以康古尔塔格碰撞带中洋壳残片为代表的古洋岩石圈板块向西伯利亚古板块之下的俯冲有关;②吐哈盆地东缘以近东西走向、向南倾斜的片理或片麻理为特征的变质变形事件发生在386Ma以后。 相似文献
89.
滇西哀牢山变质岩系锆石U-Pb定年及其地质意义 总被引:4,自引:7,他引:4
哀牢山-红河构造带是滇西地区最著名的带状变质带之一,其主体由哀牢山深变质岩系(哀牢山岩群)组成,一直被认为是扬子陆块古元古代结晶基底.本文选取哀牢山深变质岩系内的花岗片麻岩(11 ALl7-1和11AL09-1)和石英岩(11AL08-1),以及邻区的花岗岩(11ALl2-1)进行LA-ICP-MS锆石U-Pb定年.结果显示,花岗片麻岩11 ALl7-1有岩浆和变质两类锆石,两者的206Pb/238U年龄加权平均值分别为700±6Ma(MSWD=1.4,n=14)和27.4±1.2Ma(MSWD=1.9,n=3),代表原岩形成时代和变质年龄.花岗片麻岩llAL09-1岩浆锆石206 pb/238U年龄为220±3Ma(MSWD=3.1,n=14),变质锆石年龄为31.2±2.3Ma(MSWD =6,n=5),分别代表原岩结晶时代和后期变质年龄.石英岩11AL08-1中所有锆石具有核-边结构,92颗锆石核部年龄集中分布在6组,分别为493~528Ma(n=42)、635 ~ 640Ma(n=2)、701~784Ma(n=44)、976 ~980Ma(n=2)、1839Ma(n=1)和2487Ma(n=1).92个核部分析点具有高的Th/U比值(>0.23),指示岩浆来源.最年轻一组的42个核部年龄加权平均值为509Ma,代表石英岩原岩的最大沉积时代.7颗锆石变质边年龄为26~ 75 Ma内,代表变质年龄.花岗岩11 ALl2-1锆石206pb/238U年龄加权平均值为750±4Ma(MSWD =0.6),代表岩石形成时代.这些年龄表明哀牢山变质岩系是一个原岩复杂的变质杂岩带,它的原始物质至少包含新元古代~ 700Ma岩浆岩、~509 Ma沉积地层及220 ~ 240Ma的岩浆岩和地层,而不是以往认为的古元古代结晶基底.现今所见的哀牢山岩群“古老”岩石面貌主要是由地质历史上的浅变质或未变质的地层和岩浆岩在新生代26~31Ma发生变质变形作用改造的结果.哀牢山变质带的源区物质特征和主要岩浆事件与扬子陆块西缘十分相似,具有亲扬子的构造属性. 相似文献
90.
Microstructural tectonometamorphic processes and the development of gneissic layering: a mechanism for metamorphic segregation 总被引:5,自引:1,他引:5
The Mary granite, in the East Athabasca mylonite triangle, northern Saskatchewan, provides an example and a model for the development of non-migmatitic gneissic texture. Gneissic compositional layering developed through the simultaneous evolution of three microdomains corresponding to original plagioclase, orthopyroxene and matrix in the igneous rocks. Plagioclase phenocrysts were progressively deformed and recrystallized, first into core and mantle structures, and ultimately into plagioclase-rich layers or ribbons. Garnet preferentially developed in the outer portions of recrystallized mantles, and, with further deformation, produced garnet-rich sub-layers within the plagioclase-rich gneissic domains. Orthopyroxene was replaced by clinopyroxene and garnet (and hornblende if sufficient water was present), which were, in turn, drawn into layers with new garnet growth along the boundaries. The igneous matrix evolved through a number of transient fabric stages involving S-C fabrics, S-C-C' fabrics, and ultramylonitic domains. In addition, quartz veins were emplaced and subsequently deformed into quartz-rich gneissic layers. Moderate to highly strained samples display extreme mineralogical (compositional) segregation, yet most domains can be directly related to the original igneous precursors. The Mary granite was emplaced at approximately 900 °C and 1.0 GPa and was metamorphosed at approximately 750 °C and 1.0 GPa. The igneous rocks crystallized in the medium-pressure granulite field (Opx–Pl) but were metamorphosed on cooling into the high-pressure (Grt–Cpx–Pl) granulite field. The compositional segregation resulted from a dynamic, mutually reinforcing interaction between deformation, metamorphic and igneous processes in the deep crust. The production of gneissic texture by processes such as these may be the inevitable result of isobaric cooling of igneous rocks within a tectonically active deep crust. 相似文献