首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   20篇
  国内免费   40篇
大气科学   3篇
地球物理   13篇
地质学   110篇
海洋学   4篇
综合类   3篇
自然地理   1篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   7篇
  2018年   3篇
  2017年   5篇
  2016年   3篇
  2015年   5篇
  2014年   7篇
  2013年   6篇
  2012年   10篇
  2011年   4篇
  2009年   2篇
  2008年   4篇
  2007年   7篇
  2006年   7篇
  2005年   5篇
  2004年   1篇
  2003年   6篇
  2002年   5篇
  2001年   8篇
  2000年   2篇
  1999年   10篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1990年   1篇
  1981年   1篇
排序方式: 共有134条查询结果,搜索用时 0 毫秒
131.
The Yusufeli area, in the Eastern Black Sea Region of Turkey, contains a crystalline complex that intruded into the Carboniferous metamorphic basement and is composed of two intrusive bodies: a gabbro-diorite and a tonalite-trondhjemite. The mafic body (45–57 wt% SiO2) displays a broad lithological spectrum ranging from plagioclase-cumulate to quartz diorite. Primitive varieties of the body have Mg-number, MgO and Cr contents that are close to those expected for partial melts from mantle peridotite. Data are consistent with the magma generation in an underlying mantle wedge that was depleted in Zr, Nb and Ti, and enriched in large ion lithophile elements (K, Rb, Ba, Th). However, high Al2O3, CaO and generally low Ni (<65 ppm) contents are not in agreement with the unfractionated mantle-derived primitive magmas and require some Al2O3- and CaO-poor mafic phases, in particular, olivine and orthopyroxene. Absence of orthopyroxene in crystallization sequence, uralitization, and a common appearance of clinopyroxene surrounded by hornblende imply an anhydrous phase fractionated from highly hydrous (5–6%) parent. Geochemical modelling suggests derivation by 15–20% melting of a depleted-lherzolitic mantle. The tonalite-trondhjemite body (58–76 wt% SiO2) ranges in composition from quartz diorite to granodiorite with a low-K calc-alkaline trend. Although LILE- and LREE- enriched characteristics of the primitive samples imply a metasomatic sub-arc mantle for their source region, low MgO, Ni and Cr concentrations rule out direct derivation from the mantle wedge. Also, lack of negative Eu anomalies suggests an unfractionated magma and precludes a differentiation from the diorites of mafic body, which show negative Eu anomalies. Their Na enrichments relative to Ca and K are similar to those of Archean tonalites, trondhjemites and granodiorites and Cenozoic adakites. However, they exhibit important geochemical differences from them, including low-Al (<15 wt%) contents, unfractionated HREE patterns and evolution towards the higher Y concentrations and lower Sr/Y ratios within the body. All these features are obtained in experimentally produced melts from mafic rocks at low pressures (≤5 kbar) and also widespread in the rocks of arc where old (Upper Cretaceous or older) oceanic crust is being subducted. Major and REE modelling supports formation of the quartz dioritic parent to the felsic intrusive rocks by 70% partial melting of a primitive gabbroic sample (G694). Therefore, once taking into account the extensional conditions prevailing in the Pontian arc crust in Early Jurassic time, former basic products (gabbros) seem to be the most appropriate source for the tonalite-trondhjemite body. Magmatic emplacement of stratigraphically similar lithologies in the Pulur Massif, just southwest of the Yusufeli, was dated to be 184 Ma by the 40Ar/39Ar method on amphibole, and is compatible with the initiation of Early Jurassic rifting in the region.  相似文献   
132.
沙坝海岸沿岸流速度剖面特征研究   总被引:1,自引:0,他引:1  
王彦  邹志利 《海洋学报》2014,36(11):120-130
通过对两个坡度沙坝地形沿岸流实验测量和基于能量方程的沿岸流数值模拟,研究了沙坝海岸平均沿岸流速度剖面的双峰剖面特征,重点分析了第二个峰值的特征和两峰值的比值。综合考虑入射波高、入射波类型和坡度对波生沿岸流垂直岸线速度剖面的影响。结果表明,平均沿岸流速度剖面出现双峰剖面特征:第一峰值发生在沙坝向岸侧面的中部,第二个峰值发生在靠近岸线处;同一坡度情况两个峰值的位置和比值,不受入射波类型、入射波高的影响。数值模型中包括了侧混、底摩擦和水滚等因素,其数值模拟结果和实验值拟合较好,并讨论了有无侧混和水滚对速度剖面的影响。  相似文献   
133.
《International Geology Review》2012,54(11):1370-1390
ABSTRACT

To better understand the Neoproterozoic tectonic evolution along the northern margin of Yangtze Block, we have determined the geochronological and geochemical compositions of newly recognized bimodal volcanic suite and coeval granites from the western Dabie terrain. LA-ICP-MS zircon U-Pb dating reveals that the felsic and mafic volcanics from the Hong’an unit have crystallization ages of 730 ± 4Ma and 735 ± 5Ma, respectively, indicating that the bimodal suite was erupted during the Neoproterozoic. The Xuantan, Xiaoluoshan, and Wuchenhe granites yield U-Pb ages of 742 ± 4 Ma, 738 ± 4 Ma, and 736 ± 4 Ma, respectively. The felsic volcanic rocks show peraluminous characteristics, and have a close affinity to S-type granite. The mafic volcanic rocks are basalt in compositions, and are likely generated from a depleted mantle source. The granites belong to high-K calc-alkaline and calc-alkaline series, display metaluminous to peraluminous, and are mainly highly fractionated I-type and A-type granite. The granites and felsic volcanics have zircon εHf(t) values of ?16.4 to + 5.6 and two-stage Hf model ages (TDM2) of 1.28 to 2.40 Ga, suggesting that they were partial melting of varying Mesoproterozoic–early-Neoproterozoic crust. The granites have εNd(t) of -14.7 to -1.5, and the two-stage Nd model ages (TDM2) values of 1.54 to 2.61 Ga, also implying the Yangtze crustal contribution. These Neoproterozoic bimodal suite and coeval granites were most likely generated in a rifting extensional setting, triggered by the mantle upwelling, associated with crust–mantle interaction. Intensive magmatic rocks are widespread throughout the South Qingling, Suizhao, western Dabie and eastern Dabie areas during 810–720 Ma, and show peak ages at ~ 740 Ma. Combining regional geology, we support a continental rifting extensional setting for the north margin of the Yangtze Block during the break-up of the supercontinent Rodinia.  相似文献   
134.
Volcanic rocks in the Middle–Lower Yangtze River Valley (MLYRV) constitute a bimodal magmatic suite, with a significant compositional gap (between 50% and 63% SiO2) between the mafic and felsic members. The suite is characterized by a relatively wide spectrum of rock types, including basalts, trachytes, and rhyolites. The basaltic rocks have low-to-moderate SiO2 contents of 46.00–50.01%, whereas the trachytes and rhyolites possess SiO2 contents in the range of 63.08–77.61%. Rocks of the bimodal suite show moderate enrichment of LILEs, negative Nb, Ta, and Ti anomalies, and are significantly enriched in LREEs. The basalts were most likely generated by parental mafic magmas derived from enriched lithospheric mantle with minor assimilation of crustal materials involving coeval crystal fractionation during magma evolution. The results of energy-constrained assimilation and fractional crystallization simulations demonstrate that the felsic magma was produced by the mixing of 5–20% lower crustal anatectic melts with an evolved mafic magma (~48% SiO2) and accompanied by extensive clinopyroxene, plagioclase, biotite, and Fe–Ti oxide fractionation. Our model for the genesis of felsic rocks in bimodal suites is different from the traditional models of crustal melting and fractional crystallization or assimilation–fractional crystallization of basaltic liquids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号