全文获取类型
收费全文 | 242篇 |
免费 | 29篇 |
国内免费 | 15篇 |
专业分类
测绘学 | 32篇 |
大气科学 | 1篇 |
地球物理 | 43篇 |
地质学 | 26篇 |
海洋学 | 158篇 |
综合类 | 9篇 |
自然地理 | 17篇 |
出版年
2023年 | 6篇 |
2022年 | 5篇 |
2021年 | 5篇 |
2020年 | 14篇 |
2019年 | 17篇 |
2018年 | 12篇 |
2017年 | 13篇 |
2016年 | 12篇 |
2015年 | 5篇 |
2014年 | 10篇 |
2013年 | 28篇 |
2012年 | 5篇 |
2011年 | 9篇 |
2010年 | 5篇 |
2009年 | 10篇 |
2008年 | 10篇 |
2007年 | 10篇 |
2006年 | 13篇 |
2005年 | 9篇 |
2004年 | 7篇 |
2003年 | 13篇 |
2002年 | 12篇 |
2001年 | 2篇 |
2000年 | 6篇 |
1999年 | 3篇 |
1998年 | 3篇 |
1997年 | 8篇 |
1996年 | 12篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1993年 | 6篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 3篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1982年 | 1篇 |
排序方式: 共有286条查询结果,搜索用时 15 毫秒
11.
John K. Hall 《Marine Geophysical Researches》2006,27(1):1-5
This special issue of Marine Geophysical Researches presents five papers dealing with GEBCO, the General Bathymetric Chart
of the Oceans, which celebrated its Centennial in April 2003, hosted by the International Hydrographic Bureau and the Principality
of Monaco. Over the past 103 years GEBCO has been the sole body dedicated to compiling all available data to produce standardized
maps of the oceans and seas covering 71% of planet Earth. Over time GEBCO has undergone a complete transformation as sparse
500 m contours on paper charts were replaced by digital grids with ever-increasing resolution. The 2003 Centennial saw the
release on two CDROMS with the first global 1′ grid, produced by methods unheard of in 1984, when GEBCO’s last 6th Edition
paper chart set was published. In GEBCO’s second century, the thrust is towards global grids that will capture the resolutions
available with evolving deep-water swath mapping technologies, as well as vast improvement in the details of the shallow continental
shelves that have traditionally been the preserve of the hydrographic community. As little more than 10% of the oceans have
been mapped to the desired level of detail, there is much to be done. However refinements in satellite altimetry appear to
offer an interim stop-gap as more multi-beam sonars ply the oceans and as the littoral countries of the world map their adjacent
marine areas for submission under Article 76 of UNCLOS (United Nations, 1983, 1999). In addition GEBCO is becoming increasingly proactive, with outreach to the public via the internet and a new GEBCO Map
of the World, active data-scrounging, and encouraging development of the first drifting buoys for acquiring data in the inaccessible
areas of the Antarctic, SW Pacific, and Arctic Oceans. 相似文献
12.
Reinhardt L. Kudrass H.-R. Lückge A. Wiedicke M. Wunderlich J. Wendt G. 《Marine Geophysical Researches》2002,23(4):335-351
About 6000 km of both bathymetric and high-resolution acoustic profiles were acquired on the shelf and upper slope offshore Peru between 9° S and 14° S. Two new sediment echosounder systems – SEL-96 and SES-2000DS – provided details of the sedimentary structures of the Quaternary sequences within the Sechura-Salaverry, Huacho and Pisco Basins. To a great extent, the poleward undercurrent determines the distribution of sediments. The undercurrent has generated numerous erosional unconformities, it has winnowed hardgrounds and has created mudwaves common between 250 m and 400 m water depth. Distinct subbottom reflectors within sedimentary units represent hiatuses due to periods of intensified winnowing or non-deposition. Erosional unconformities usually marked by pronounced reflectors suggest shifts of the undercurrent system related to climatic changes and eustatic variations of sea level. On a larger scale, the stacked prograding depositional sequences reflect the sea-level cycles of the Middle Pleistocene to the Holocene. Based on the stratigraphy of our piston cores and that of Ocean Drilling Program (ODP) Site 680, the depositional sequences limited by extended unconformities were assigned to oxygen isotope stages 1 to 7. Other sedimentary structures are small straight channels that were conduits for downslope sediment transport. Deformed sediments associated with synsedimentary normal faults result from creep movements indicating beginning slope failure. 相似文献
13.
14.
A new bathymetric model for the central Fram Strait 总被引:1,自引:0,他引:1
Based on data from R/V Polarstern multibeam sonar surveys between 1984 and 1997 high resolution bathymetry has been generated for the central Fram Strait. The area insonified covers approx. 36,500 km2 between 78–80°N and 0–7.5°E allowing the creation of a Digital Terrain Model (DTM) with 100 m grid spacing. The DTM was utilized for contouring and generation of a new series of bathymetric charts (AWI Bathymetric Charts of the Fram Strait, AWI BCFS) at a scale of 1:100,000. The paper starts with a brief introduction to the regional setting of the study area comprising information on the local links between bathymetry, sea ice transport and water mass exchange. The bathymetric feature names used in this article and how they were chosen is outlined. Next, the input data and processing applied are described. Thereafter the newly created grid and contour data are put into context with existing data sets. Finally the main bathymetric features of the area are characterized and the generated data products available for public disposal are specified. 相似文献
15.
16.
17.
为了探究激波捕捉类Boussinesq模型在模拟岛礁地形上规则波和不规则波传播的可行性,采用基于完全非线性Boussinesq方程并具有激波捕捉能力的数值模型Funwave-TVD对规则波和不规则波在岛礁地形上的传播进行了数值模拟,通过与试验数据对比,分析模型中空间步长的影响,验证模型在模拟波高、平均水位分布以及波谱空间演变的能力,结果表明:采用合适的空间步长,模型能较好地模拟规则波和不规则波在岛礁地形上的传播和演化过程。对于规则波,较小的空间步长可改善破碎点处波高峰值的预测,并能更好地预测波浪破碎后波高的空间分布,相比结合经验破碎的Boussinesq模型,Funwave-TVD能更好地模拟规则波在岛礁地形上的破碎,以及破碎以后行进涌波的再生成过程;对于不规则波,Funwave-TVD总体而言能较好地模拟涌浪有效波高、次重力波的生成及空间演化和平均水位,但会低估礁坪上次重力波波高,较粗的空间步长也会低估礁坪上涌浪有效波高。 相似文献
18.
刘振 《中国海洋湖沼学报》2013,31(6):1350-1355
The Spratly (Nansha) Islands in the South China Sea have considerable economic and important militarily strategic status. Ocean color remote sensing is an effective mean of surveying and research and especially it is useful for areas that are difficult to access, such as Thitu Island and its reef in the Spratly Islands. The Hyper-spectral Optimization Process Exemplar (HOPE) model, developed by Lee et al. (1999) is a rapid and robust bathymetry method that uses hyper-spectral remote sensing. In this study, using Hyperion hyper-spectral sensor data and HOPE, we derive bathymetry and bottom albedo measurements around Thitu Island and its reef. We compare the distribution of bottom depths from C-MAP with that derived from the Hyperion data. The retrieved bathymetry results correlate well with the distribution obtained from the bathymetry contour from 2.0 to 20 m. The average difference between Hyperion and C-MAP for two selected transects was 17.1% (n=59, R=0.848, RMSE=2.342) and 10.9% (n=59, R2=0.834, RMSE=0.463). The retrieved bottom albedo is homogeneous in the lagoon and significantly non-homogeneous around the lagoon. These results indicate that HOPE could be very useful for bathymetry studies for the islands of the South China Sea. 相似文献
19.
将测高重力异常、局部大地水准面和垂线偏差作为输入数据,计算海洋垂直重力梯度异常。以中西太平洋海域作为研究对象,对垂直重力梯度异常和海底地形的相关性进行分析,在20~200 km波段范围内利用梯度异常推估海底地形。结果表明,反演地形的相对精度在7.14%左右,在多海山地区精度较差。 相似文献
20.
Remote measurement of river morphology via fusion of LiDAR topography and spectrally based bathymetry 总被引:1,自引:0,他引:1
Carl J. Legleiter 《地球表面变化过程与地形》2012,37(5):499-518
This study developed and evaluated a hybrid approach to remote measurement of river morphology that combines LiDAR topography with spectrally based bathymetry. Comparison of filtered LiDAR point clouds with surveyed cross‐sections indicated that subtle features on low‐relief floodplains were accurately resolved by LiDAR but that submerged areas could not be detected due to strong absorption of near‐infrared laser pulses by water. The reduced number of returns made the active channel evident in a LiDAR point density map. A second dataset suggested that pulse intensity also could be used to discriminate land from water via a threshold‐based masking procedure. Fusion of LiDAR and optical data required accurate co‐registration of images to the LiDAR, and we developed an object‐oriented procedure for achieving this alignment. Information on flow depths was derived by correlating pixel values with field measurements of depth. Highly turbid conditions dictated a positive relation between green band radiance and flow depth and contributed to under‐prediction of pool depths. Water surface elevations extracted from the LiDAR along the water's edge were used to produce a continuous water surface that preserved along‐channel variations in slope. Subtracting local flow depths from this surface yielded estimates of the bed elevation that were then combined with LiDAR topography for exposed areas to create a composite representation of the riverine terrain. The accuracy of this terrain model was assessed via comparison with detailed field surveys. A map of elevation residuals showed that the greatest errors were associated with underestimation of pool depths and failure to capture cross‐stream differences in water surface elevation. Nevertheless, fusion of LiDAR and passive optical image data provided an efficient means of characterizing river morphology that would not have been possible if either dataset had been used in isolation. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献