全文获取类型
收费全文 | 247篇 |
免费 | 49篇 |
国内免费 | 4篇 |
专业分类
测绘学 | 36篇 |
大气科学 | 1篇 |
地球物理 | 44篇 |
地质学 | 26篇 |
海洋学 | 167篇 |
综合类 | 9篇 |
自然地理 | 17篇 |
出版年
2025年 | 1篇 |
2024年 | 6篇 |
2023年 | 12篇 |
2022年 | 6篇 |
2021年 | 5篇 |
2020年 | 14篇 |
2019年 | 17篇 |
2018年 | 12篇 |
2017年 | 13篇 |
2016年 | 12篇 |
2015年 | 5篇 |
2014年 | 10篇 |
2013年 | 28篇 |
2012年 | 5篇 |
2011年 | 9篇 |
2010年 | 5篇 |
2009年 | 10篇 |
2008年 | 10篇 |
2007年 | 10篇 |
2006年 | 13篇 |
2005年 | 9篇 |
2004年 | 7篇 |
2003年 | 13篇 |
2002年 | 12篇 |
2001年 | 2篇 |
2000年 | 6篇 |
1999年 | 3篇 |
1998年 | 3篇 |
1997年 | 8篇 |
1996年 | 12篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1993年 | 6篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 3篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1982年 | 1篇 |
排序方式: 共有300条查询结果,搜索用时 15 毫秒
11.
GPS动态实时差分定位模式具有精度高,性能可靠,使用方便等优点,它在许多领域都展示了广阔的应用前景,本文将以DGPS在航道的水下地形与不深测量方面的具体应用为例予以简单介绍,代与同行交流。 相似文献
12.
A new bathymetric model for the central Fram Strait 总被引:1,自引:0,他引:1
Based on data from R/V Polarstern multibeam sonar surveys between 1984 and 1997 high resolution bathymetry has been generated for the central Fram Strait. The area insonified covers approx. 36,500 km2 between 78–80°N and 0–7.5°E allowing the creation of a Digital Terrain Model (DTM) with 100 m grid spacing. The DTM was utilized for contouring and generation of a new series of bathymetric charts (AWI Bathymetric Charts of the Fram Strait, AWI BCFS) at a scale of 1:100,000. The paper starts with a brief introduction to the regional setting of the study area comprising information on the local links between bathymetry, sea ice transport and water mass exchange. The bathymetric feature names used in this article and how they were chosen is outlined. Next, the input data and processing applied are described. Thereafter the newly created grid and contour data are put into context with existing data sets. Finally the main bathymetric features of the area are characterized and the generated data products available for public disposal are specified. 相似文献
13.
C. Riedel A. Tryggvason B. Brandsdottír T. Dahm R. Stéfansson M. Hensch R. Böðvarsson K. S. Vogfjord S. Jakobsdottír T. Eken R. Herber J. Holmjarn M. Schnese M. Thölen B. Hofmann B. Sigurdsson S. Winter 《Marine Geophysical Researches》2006,27(4):267-281
Between June 2004 and September 2004 a temporary seismic network was installed on the northern insular shelf of Iceland and onshore in north Iceland. The seismic setup aimed at resolving the subsurface structure and, thus, the geodynamical transition from Icelandic crust to typical oceanic crust along Kolbeinsey Ridge. The experiment recorded about 1,000 earthquakes. The region encloses the Tjörnes Fracture Zone containing the Husavik–Flatey strike-slip fault and the extensional seismic Grimsey Lineament. Most of the seismicity occurs in swarms offshore. Preliminary results reveal typical mid-ocean crust north of Grimsey and a heterogeneous structure with major velocity anomalies along the seismic lineaments and north–south trending subsurface features. Complementary bathymetric mapping highlight numerous extrusion features along the Grimsey Lineament and Kolbeinsey Ridge. The seismic dataset promises to deliver new insights into the tectonic framework for earthquakes in an extensional transform zone along the global mid-ocean ridge system. 相似文献
14.
15.
Deformation Patterns of an Accretionary Wedge in the Transition Zone from Subduction to Collision Offshore Southwestern Taiwan 总被引:1,自引:0,他引:1
Char-Shine Liu Benoit Deffontaines Chia-Yu Lu Serge Lallemand 《Marine Geophysical Researches》2004,25(1-2):123-137
Swath bathymetry data and seismic reflection profiles have been used to investigate details of the deformation pattern in the area offshore southwestern Taiwan where the Luzon subduction complex encroaches on the passive Chinese continental margin. Distinctive fold-and-thrust structures of the convergent zone and horst-and-graben structures of the passive margin are separated by a deformation front that extends NNW-ward from the eastern edge of the Manila Trench to the foot of the continental slope. This deformation front gradually turns into a NNE–SSW trending direction across the continental slope and the Kaoping Shelf, and connects to the frontal thrusts of the mountain belt on land Taiwan. However, the complex Penghu submarine canyon system blurs the exact location of the deformation front and nature of many morphotectonic features offshore SW Taiwan. We suggest that the deformation front offshore SW Taiwan does not appear as a simple structural line, but is characterized by a series of N–S trending folds and thrusts that terminate sequentially in an en-echelon pattern across the passive Chinese continental slope. A number of NE–SW trending lineaments cut across the fold-and-thrust structures of the frontal accretionary wedge and exhibit prominent dextral displacement indicative of the lateral expulsion of SW Taiwan. One of the prominent lineaments, named the Yung-An lineament, forms the southeastern boundary of the upper part of the Penghu submarine canyon, and has conspicuous influence over the drainage pattern of the canyon 相似文献
16.
Automatic Registration of TOBI Side-Scan Sonar and Multi-Beam Bathymetry Images for Improved Data Fusion 总被引:1,自引:0,他引:1
Deep towed side-scan sonar vehicles such as TOBI acquire high quality imagery of the seafloor with very high spatial resolution but poor locational accuracy. Fusion of the side-scan sonar data with bathymetry data from an independent source is often desirable to reduce ambiguity in geological interpretations, to aid in slant-range correction and to enhance seafloor representation. The main obstacle to fusion is accurate registration of the two datasets.The application of hierarchical chamfer matching to the registration of TOBI side-scan sonar images and multi-beam swath bathymetry is described. This matches low level features such as edges in the TOBI image, with corresponding features in a synthetic TOBI image created by simulating the flight of the TOBI vehicle through the bathymetry. The method is completely automatic, relatively fast and robust, and much easier than manual registration. It allows accurate positioning of the TOBI vehicle, enhancing its usefulness as a research tool. The method is illustrated by automatic registration of TOBI and multi-beam bathymetry data from the Mid-Atlantic Ridge. 相似文献
17.
18.
Catherine Schuur Duncan John A. Goff James A. AustinJr. Craig S. Fulthorpe 《Marine Geology》2000,170(3-4):395-421
Seafloor geomorphology and surficial stratigraphy of the New Jersey middle continental shelf provide a detailed record of sea-level change during the last advance and retreat of the Laurentide ice sheet (120 kyr B.P. to Present). A NW–SE-oriented corridor on the middle shelf between water depths of 40 m (the mid-shelf “paleo-shore”) and 100 m (the Franklin “paleo-shore”) encompasses 500 line-km of 2D Huntec boomer profiles (500–3500 Hz), an embedded 4.6 km2 3D volume, and a 490 km2 swath bathymetry map. We use these data to develop a relative stratigraphy. Core samples from published studies also provide some chronological and sedimentological constraints on the upper <5 m of the stratigraphic succession.The following stratigraphic units and surfaces occur (from bottom to top): (1) “R”, a high-amplitude reflection that separates sediment >46.5 kyr old (by AMS 14C dating) from overlying sediment wedges; (2) the outer shelf wedge, a marine unit up to 50 m thick that onlaps “R”; (3) “Channels”, a reflection sub-parallel to the seafloor that incises “R”, and appears as a dendritic system of channels in map view; (4) “Channels” fill, the upper portion of which is sampled and known to represent deepening-upward marine sediments 12.3 kyr in age; (5) the “T” horizon, a seismically discontinuous surface that caps “Channels” fill; (6) oblique ridge deposits, coarse-grained shelly units comprised of km-scale, shallow shelf bedforms; and (7) ribbon-floored swales, bathymetric depressions parallel to modern shelf currents that truncate the oblique ridges and cut into surficial deposits.We interpret this succession of features in light of a global eustatic sea-level curve and the consequent migration of the coastline across the middle shelf during the last 120 kyr. The morphology of the New Jersey middle shelf shows a discrete sequence of stratigraphic elements, and reflects the pulsed episodicity of the last sea-level cycle. “R” is a complicated marine/non-marine erosional surface formed during the last regression, while the outer shelf wedge represents a shelf wedge emplaced during a minor glacial retreat before maximum Wisconsin lowstand (i.e., marine oxygen isotope stage 3.1). “Channels” is a widespread fluvial subarial erosion surface formed at the late Wisconsin glacial maximum 22 kyr B.P. The shoreline migrated back across the mid-shelf corridor non-uniformly during the period represented by “Channels” fill. Oblique ridges are relict features on the New Jersey middle shelf, while the ribbon-floored swales represent modern shelf erosion. There is no systematic relationship between modern seafloor morphology and the very shallowly buried stratigraphic succession. 相似文献
19.
20.
The historical tsunamis in the Marmara Seawere mainly caused by earthquakes andneeded to be documented. Following 1999Izmit earthquake occurred at the EasternMarmara region, a complete inventory ofactive faults in the Marmara Sea regionbecame much more stressed. To the west, thelatest event is 09.08.1912arköy-Mürefte Earthquake. Itoccurred on the active Ganos Fault zone andwas one of the largest earthquakes in theBalkans. The eastern termination of theassociated faulting is in the deep WestMarmara Trough, westernmost of thesuccessive basins forming the Marmara Sea.On the basis of recent multibeam bathymetryand seismic reflection data, estimatedtotal length of the surface rupture isabout 56 km. The historical data reviewedfrom library and archive documents,geological field surveys and offshoregeophysical investigations have shown thatthe 1912 earthquake produced a tsunami. Inaddition a seabed dislocation, the sourceof 1912 tsunami can also be assigned to thesediment slumps appearing in the form ofechelon landslide prisms along the southernslopes of the West Marmara Trough. 相似文献