首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   47篇
  国内免费   29篇
测绘学   1篇
大气科学   11篇
地球物理   109篇
地质学   174篇
海洋学   47篇
综合类   16篇
自然地理   24篇
  2023年   11篇
  2022年   4篇
  2021年   6篇
  2020年   14篇
  2019年   14篇
  2018年   11篇
  2017年   12篇
  2016年   13篇
  2015年   11篇
  2014年   9篇
  2013年   14篇
  2012年   18篇
  2011年   16篇
  2010年   13篇
  2009年   19篇
  2008年   18篇
  2007年   26篇
  2006年   37篇
  2005年   24篇
  2004年   23篇
  2003年   14篇
  2002年   12篇
  2001年   18篇
  2000年   7篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有382条查询结果,搜索用时 9 毫秒
121.
王水水浴消解-冷原子荧光法测定土壤和沉积物中的总汞   总被引:30,自引:3,他引:30  
土壤和沉积物中的总汞是环境监测的常规项目。不同消解方法对测定结果和分析进度影响较大。本文改进了与其它强氧化体系消解样品具有可对比性的传统王水消解法,利用王水在95℃水浴中一次消解,结合BrCl氧化-SnCl2还原-汞蒸汽吹脱金管预富集-冷原子荧光法测定了土壤和沉积物样品中的总汞。该方法操作简单,数据可靠,精度高,土壤和沉积物标准样品测定的相对误差为-4.6%~10.1%,回收率91.1%~111.6%;平行样测定重现性良好,提高了分析速度和准确度。  相似文献   
122.
臭氧-超声联用处理聚乙烯醇废水   总被引:2,自引:0,他引:2  
本研究采用臭氧-超声(O3/US)联用技术处理聚乙烯醇(PVA)废水,分别考察了PVA初始质量浓度、初始pH、臭氧通入速率、超声功率、超声频率及反应时间对PVA和COD去除效率的影响,并在此基础上通过正交实验确定了降解PVA和COD的最佳实验条件。研究结果表明,超声频率对去除率有显著影响,PVA初始质量浓度对去除效率的影响较大,反应时间、超声功率、臭氧通入速率和初始pH的影响相对较小。通过影响实验和正交实验确定的最佳降解条件为:PVA初始质量浓度100 mg/L、初始pH=9、臭氧通入速率4 g/h、超声功率320 W、超声频率40 kHz、反应时间20 min,此时COD和PVA的去除效率分别为86.4%和99.3%。超声对臭氧降解聚乙烯醇废水具有明显的协同作用,在最佳条件下,臭氧-超声联用技术比单独臭氧技术对PVA的去除率增加了5.1%,对COD去除率增加了19.4%。  相似文献   
123.
This preliminary work reported here dealt with potential impacts of wastewater irrigation on soils and crops sampled along the Koshk River canal in the suburban area of Shiraz City, Iran. It also attempts to assess the extent of heavy metal contamination in soils and crops and human exposure risk. For this purpose, samples including soils and plants were collected from two wastewater irrigated sites and a tubewell-irrigated site (marked by A, B and C). Concentrations of the six heavy metals Ni, Pb, Cd, Zn, Cr and Cu were determined by AAS. Physical and chemical properties of soil samples were also determined. The PLIs and CF for soils and HQ (Hazard quotient) for some vegetables were calculated. The results showed that organic matter content increased from 22% to 30 % in wastewater-irrigated soils as compared to tubewell water irrigated and admixture water irrigated ones. The soil pH was raised by 2 units as a result of wastewater irrigation at site A compared to sites B and C. Wastewater irrigation also result in relatively high concentrations of Ni, Pb and Zn (275.5, 441.3 and 177 mg/kg, respectively) in wastewater irrigated soils over tubewell water irrigated soils. These levels are higher than the maximum permissible limits in unpolluted soils, indicating that a degree of contamination has occurred. This was confirmed by calculated PLIs and contamination factors in soil samples, The results also showed some crops cultivated at sites A and B contained high levels of Ni and Cd beyond the maximum permissible concentrations and those cultivated at site C. The concentrations of these heavy metals are within or very close to the critical levels. HQ indices and daily intake calculated in respect of metal contents in some vegetables (spinach, lettuce and celery) showed that toxic risk due to Cd in these vegetables and crops was greater than one. This study generally concludes that although the content of heavy metals did not reach toxic level, extensive use of untreated wastewater drawn from the Koshk River has obviously increased the contamination of Ni and Pb in soils and Cd in some vegetables cultivated along the canal, causing potential health risk in the long-term scense for consumers or local residents.  相似文献   
124.
详述了硫酸铝钾-聚丙烯酰胺体系处理钛白废水的研究,较全面地分析了江西赣东化工厂钛白废水的物质组成和污染负荷,对该处理体系的工艺条件进行了系统研究,确定了最佳工艺条件。结果表明,该体系处理钛白废水,能有效降低废水中污染物质,值得作进一步研究。  相似文献   
125.
金属矿物材料在废水处理中的应用   总被引:1,自引:0,他引:1  
从环境矿物学角度,对金属矿物材料(铁氧化物与氢氧化物、锰氧化物和氢氧化物、铁硫化物)在废水处理中的应用现状进行了综述,分析金属矿物材料在水环境保护方面存在的问题,并对其应用前景进行展望。  相似文献   
126.
Polycyclic aromatic hydrocarbons are ubiquitous pollutants in the environment, and most high molecular weight PAHs cause mutagenic, teratogenic and potentially carcinogenic effects. While several strains have been identified that degrade PAHs, the present study is focused on the degradation of PAHs in a marine environment by a moderately halophilic bacterial consortium. The bacterial consortium was isolated from a mixture of marine water samples collected from seven different sites in Chennai, India. The low molecular weight (LMW) PAHs phenanthrene and fluorine, and the high molecular weight (HMW) PAHs pyrene and benzo(e)pyrene were selected for the degradation study. The consortium metabolized both LMW and HMW PAHs. The consortium was also able to degrade PAHs present in crude oil-contaminated saline wastewater. The bacterial consortium was able to degrade 80% of HMW PAHs and 100% of LMW PAHs in the saline wastewater. The strains present in the consortium were identified as Ochrobactrum sp., Enterobacter cloacae and Stenotrophomonas maltophilia. This study reveals that these bacteria have the potential to degrade different PAHs in saline wastewater.  相似文献   
127.
A three-layer Artificial Neural Network (ANN) model (9:12:1) for the prediction of Chemical Oxygen Demand Removal Efficiency (CODRE) of Upflow Anaerobic Sludge Blanket (UASB) reactors treating real cotton textile wastewater diluted with domestic wastewater was presented. To validate the proposed method, an experimental study was carried out in three lab-scale UASB reactors to investigate the treatment efficiency on total COD reduction. The reactors were operated for 80 days at mesophilic conditions (36–37.5°C) in a temperature-controlled water bath with two hydraulic retention times (HRT) of 4.5 and 9.0 days and with organic loading rates (OLR) between 0.072 and 0.602 kg COD/m3/day. Five different dilution ratios of 15, 30, 40, 45 and 60% with domestic wastewater were employed to represent seasonal fluctuations, respectively. The study was undertaken in a pH range of 6.20–8.06 and an alkalinity range of 1,350–1,855 mg/l CaCO3. The concentrations of volatile fatty acids (VFA) and total suspended solids (TSS) were observed between 420 and 720 mg/l CH3COOH and 68–338 mg/l, respectively. In the study, a wide range of influent COD concentrations (CODi) between 651 and 4,044 mg/l in feeding was carried out. CODRE of UASB reactors being output parameter of the conducted anaerobic treatment was estimated by nine input parameters such as HRT, pH, CODi concentration, operating temperature, alkalinity, VFA concentration, dilution ratio (DR), OLR, and TSS concentration. After backpropagation (BP) training combined with principal component analysis (PCA), the ANN model predicted CODRE values based on experimental data and all the predictions were proven to be satisfactory with a correlation coefficient of about 0.8245. In the ANN study, the Levenberg-Marquardt Algorithm (LMA) was found as the best of 11 BP algorithms. In addition to determination of the optimal ANN structure, a linear-nonlinear study was also employed to investigate the effects of input variables on CODRE values in this study. Both ANN outputs and linear-nonlinear study results were compared and advantages and further developments were evaluated.  相似文献   
128.
Of recent, adsorption process has gained a lot of attention as a cheap and effective means of removing trace metals from wastewater prior to discharge into water bodies. Being flexible in design and operation, the process has enabled an optimal recovery of trace metals such that the treated effluents meet the desired standards for waste disposal. Mercury is a toxicant released into the environment from natural and anthropogenic sources. It is notorious for having an unusual tendency to bio‐accumulate and persist in the food chain. Presence of mercury in food, especially those of aquatic sources has drastic implications on human health. Therefore, efforts have been made to develop and optimize low‐cost activated carbon (AC) as adsorbents for scavenging mercury from aqueous effluents. Herein, how mercury accumulates across the food chain, its health implications, and the recent advancement in the use of low‐cost ACs as adsorbent for trapping mercury from wastewater are highlighted. Relationship between the mercury removal efficiency and the surface morphology of the adsorbents as well as the influence of prevailing experimental condition on the sorption process were addressed. Challenges and future prospects of the use of low‐cost adsorbents in addressing mercury pollution in the environment are discussed.  相似文献   
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号