首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2587篇
  免费   293篇
  国内免费   542篇
测绘学   479篇
大气科学   359篇
地球物理   379篇
地质学   1255篇
海洋学   96篇
天文学   10篇
综合类   160篇
自然地理   684篇
  2024年   7篇
  2023年   25篇
  2022年   83篇
  2021年   102篇
  2020年   126篇
  2019年   139篇
  2018年   107篇
  2017年   149篇
  2016年   162篇
  2015年   162篇
  2014年   170篇
  2013年   240篇
  2012年   165篇
  2011年   135篇
  2010年   120篇
  2009年   170篇
  2008年   138篇
  2007年   165篇
  2006年   141篇
  2005年   135篇
  2004年   136篇
  2003年   105篇
  2002年   83篇
  2001年   73篇
  2000年   48篇
  1999年   55篇
  1998年   40篇
  1997年   36篇
  1996年   28篇
  1995年   31篇
  1994年   24篇
  1993年   32篇
  1992年   27篇
  1991年   6篇
  1990年   15篇
  1989年   9篇
  1988年   9篇
  1987年   11篇
  1986年   5篇
  1985年   3篇
  1984年   1篇
  1977年   1篇
  1976年   2篇
  1954年   1篇
排序方式: 共有3422条查询结果,搜索用时 500 毫秒
281.
Soil is a vital part of the natural environment and is always responding to changes in environmental factors, along with the influences of anthropogenic factors and land use changes. The long-term change in soil properties will result in change in soil health and fertility, and hence the soil productivity. Hence, the main aim of this paper focuses on the analysis of land use/land cover (LULC) change pattern in spatial and temporal perspective and to present its impact on soil properties in the Merawu catchment over the period of 18?years. Post classification change detection was performed to quantify the decadal changes in historical LULC over the periods of 1991, 2001 and 2009. The pixel to pixel comparison method was used to detect the LULC of the area. The key LULC types were selected for investigation of soil properties. Soil samples were analysed in situ to measure the physicochemical soil properties. The results of this study show remarkable changes in LULC in the period of 18?years. The effect of land cover change on soil properties, soil compaction and soil strength was found to be significant at a level of <0.05.  相似文献   
282.
Reliable land cover land use (LCLU) information, and change over time, is important for Green House Gas (GHG) reporting for climate change documentation. Four different organizations have independently created LCLU maps from 2010 satellite imagery for Malawi for GHG reporting. This analysis compares the procedures and results for those four activities. Four different classification methods were employed; traditional visual interpretation, segmentation and visual labelling, digital clustering with visual identification and supervised signature extraction with application of a decision rule followed by analyst editing. One effort did not report classification accuracy and the other three had very similar and excellent overall thematic accuracies ranging from 85 to 89%. However, despite these high thematic accuracies there were very significant differences in results. National percentages for forest ranged from 18.2 to 28.7% and cropland from 40.5 to 53.7%. These significant differences are concerns for both remote-sensing scientists and decision-makers in Malawi.  相似文献   
283.
影像解译是地理国情普查过程中一项重要的基础性工作,影像解译的结果直接影响作业质量、效率.本文选择东南沿海地区具有典型特征的影像,结合我省正在开展的地理国情普查实践,分别采用目视解译、自动解译和人机交互解译三种方法进行解译,从解译精度、效率、应用条件等方面,对比分析了三种方法的优缺点,结果表明:三种解译方法各具优势和不足,解译结果与影像质量、辅助数据质量、地形复杂程度、地物种类等有密切关系,在实际地理国情普查过程中须综合考虑使用.  相似文献   
284.
Difficulties in identifying actual uses of land space from remote sensing-based land cover products often result in lost opportunities to enhance the capacity of applied research on human settlements. In an attempt to address these difficulties, this study investigates how land cover and land use are interrelated with each other and what determines the relationship patterns by analyzing detailed land use and land cover data for two large US metropolitan areas – the five-county Los Angeles and six-county Chicago regions – where a broad spectrum of human settlements, ranging from urban cores to less-urbanized edges, coexist. The analysis shows that the land cover-land use relationship substantially varies not only across regions but across neighborhoods within each region. Through multivariate regression, it is also found that the intraregional variation is highly associated with the neighborhood's stage of urbanization, median housing age, and other development characteristics, suggesting that the relationship pattern can largely be shaped by the history and evolution of urban design/development.  相似文献   
285.
Detecting land-use change has become of concern to environmentalists, conservationists and land use planners due to its impact on natural ecosystems. We studied land use/land cover (LULC) changes in part of the northwestern desert of Egypt and used the Markov-CA integrated approach to predict future changes. We mapped the LULC distribution of the desert landscape for 1988, 1999, and 2011. Landsat Thematic Mapper 5 data and ancillary data were classified using the random forests approach. The technique produced LULC maps with an overall accuracy of more than 90%. Analysis of LULC classes from the three dates revealed that the study area was subjected to three different stages of modification, each dominated by different land uses. The use of a spatially explicit land use change modeling approach, such as Markov-CA approach, provides ways for projecting different future scenarios. Markov-CA was used to predict land use change in 2011 and project changes in 2023 by extrapolating current trends. The technique was successful in predicting LULC distribution in 2011 and the results were comparable to the actual LULC for 2011. The projected LULC for 2023 revealed more urbanization of the landscape with potential expansion in the croplands westward and northward, an increase in quarries, and growth in residential centers. The outcomes can help management activities directed toward protection of wildlife in the area. The study can also be used as a guide to other studies aiming at projecting changes in arid areas experiencing similar land use changes.  相似文献   
286.
Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012–2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.  相似文献   
287.
Satellite remote sensing provides an alternative to time-consuming and labor intensive in situ measurements of biophysical variables in agricultural crops required for precision agriculture applications. In orchards, however, the spatial resolution causes mixtures of canopies and background (i.e. soil, grass and shadow), hampering the estimation of these biophysical variables. Furthermore, variable background mixtures obstruct meaningful comparisons between different orchard blocks, rows or within each row. Current correction methodologies use spectral differences between canopies and background, but struggle with a vegetated orchard floor. This background influence and the lack of a generic solution are addressed in this study.Firstly, the problem was demonstrated in a controlled environment for vegetation indices sensitive to chlorophyll content, water content and leaf area index. Afterwards, traditional background correction methods (i.e. soil-adjusted vegetation indices and signal unmixing) were compared to the proposed vegetation index correction. This correction was based on the mixing degree of each pixel (i.e. tree cover fraction) to rescale the vegetation indices accordingly and was applied to synthetic and WorldView-2 satellite imagery. Through the correction, the effect of background admixture for vegetation indices was reduced, and the estimation of biophysical variables was improved (ΔR2 = 0.2–0.31).  相似文献   
288.
This study investigates urbanization and its potential environmental consequences in Shanghai and Stockholm metropolitan areas over two decades. Changes in land use/land cover are estimated from support vector machine classifications of Landsat mosaics with grey-level co-occurrence matrix features. Landscape metrics are used to investigate changes in landscape composition and configuration and to draw preliminary conclusions about environmental impacts. Speed and magnitude of urbanization is calculated by urbanization indices and the resulting impacts on the environment are quantified by ecosystem services. Growth of urban areas and urban green spaces occurred at the expense of cropland in both regions. Alongside a decrease in natural land cover, urban areas increased by approximately 120% in Shanghai, nearly ten times as much as in Stockholm, where the most significant land cover change was a 12% urban expansion that mostly replaced agricultural areas. From the landscape metrics results, it appears that fragmentation in both study regions occurred mainly due to the growth of high density built-up areas in previously more natural/agricultural environments, while the expansion of low density built-up areas was for the most part in conjunction with pre-existing patches. Urban growth resulted in ecosystem service value losses of approximately 445 million US dollars in Shanghai, mostly due to the decrease in natural coastal wetlands while in Stockholm the value of ecosystem services changed very little. Total urban growth in Shanghai was 1768 km2 and 100 km2 in Stockholm. The developed methodology is considered a straight-forward low-cost globally applicable approach to quantitatively and qualitatively evaluate urban growth patterns that could help to address spatial, economic and ecological questions in urban and regional planning.  相似文献   
289.
Global warming associated with climate change is one of the greatest challenges of today’s world. Increasing emissions of the greenhouse gas CO2 are considered as a major contributing factor to global warming. One regulating factor of CO2 exchange between atmosphere and land surface is vegetation. Measurements of land cover changes in combination with modelling the Gross Primary Productivity (GPP) can contribute to determine important sources and sinks of CO2.The aim of this study is to accurately model the GPP for a region in West Africa with a spatial resolution of 250 m, and the differentiation of GPP based on woody and herbaceous vegetation. For this purpose, the Regional Biomass Model (RBM) was applied, which is based on a Light Use Efficiency (LUE) approach. The focus was on the spatial enhancement of the RBM from the original 1000–250 m spatial resolution (RBM+). The adaptation to the 250 m scale included the modification of two main input parameters: (1) the fraction of absorbed Photosynthetically Active Radiation (FPAR) based on the 1000 m MODIS MOD15A2 FPAR product which was downscaled to 250 m using MODIS NDVI time series; (2) the fractional cover of woody and herbaceous vegetation, which was improved by using a multi-scale approach. For validation and regional adjustments of GPP and the input parameters, in situ data from a climate station and eddy covariance measurements were integrated.The results of this approach show that the input parameters could be improved significantly: downscaling considerably reduces data gaps of the original FPAR product and the improved dataset differed less than 5.0% from the original data for cloud free regions. The RMSE of the fractional vegetation cover varied between 5.1 and 12.7%. Modelled GPP showed a slight overestimation in comparison to eddy covariance measurements. The in situ data was exceeded by 8.8% for 2005 and by 2.0% for 2006. The model results were converted to NPP and also agreed well with previous NPP measurements reported from different studies. Altogether a high accuracy and suitability of the regionally adjusted and downscaled model RBM+ can be concluded. The differentiation between vegetation growth forms allows a separation of long-term and short-term carbon storage based on woody and herbaceous vegetation, respectively.  相似文献   
290.
为了提高北疆地区雪深时空分布监测的准确性,以该区域48个气象站点2006年12月—2007年1月的月平均雪深观测数据为基础,通过分析月均雪深空间自相关性及其与经纬度、高程的相关性,结合MODIS雪盖数据构建了多元非线性回归克里金插值方法,插值获得了北疆地区较高精度的雪深空间分布数据。将插值雪深数据与普通克里金插值法、考虑高程为辅助变量的协同克里金插值法的预测结果进行比较,结果表明:1相对普通克里金和协同克里金方法,多元非线性回归克里金法的12月份雪深预测精度分别提高了15.14%和9.54%,1月份的提高了4.8%和6.7%;2由于充分利用了经纬度和地形信息,多元非线性回归克里金法的雪深预测结果可提供更多细节信息;3预测结果客观地表达了雪深随经纬度和地形变化的趋势,反映了积雪深度的空间变异性;4基于不显著相关的协变量高程的协同克里金插值法预测的雪深数据精度劣于普通克里金插值法的预测结果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号