首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2587篇
  免费   293篇
  国内免费   542篇
测绘学   479篇
大气科学   359篇
地球物理   379篇
地质学   1255篇
海洋学   96篇
天文学   10篇
综合类   160篇
自然地理   684篇
  2024年   7篇
  2023年   25篇
  2022年   83篇
  2021年   102篇
  2020年   126篇
  2019年   139篇
  2018年   107篇
  2017年   149篇
  2016年   162篇
  2015年   162篇
  2014年   170篇
  2013年   240篇
  2012年   165篇
  2011年   135篇
  2010年   120篇
  2009年   170篇
  2008年   138篇
  2007年   165篇
  2006年   141篇
  2005年   135篇
  2004年   136篇
  2003年   105篇
  2002年   83篇
  2001年   73篇
  2000年   48篇
  1999年   55篇
  1998年   40篇
  1997年   36篇
  1996年   28篇
  1995年   31篇
  1994年   24篇
  1993年   32篇
  1992年   27篇
  1991年   6篇
  1990年   15篇
  1989年   9篇
  1988年   9篇
  1987年   11篇
  1986年   5篇
  1985年   3篇
  1984年   1篇
  1977年   1篇
  1976年   2篇
  1954年   1篇
排序方式: 共有3422条查询结果,搜索用时 15 毫秒
261.
刘哲  兰措 《地理科学进展》2022,41(2):304-315
气候变化和下垫面变化是影响河道径流的两大驱动力,研究两者对径流的影响有利于深入理解流域水文过程,为水资源管理提供科学依据。鉴于利用不同方法获得的结果存在一定程度的差异,有必要使用多种方法进行交叉验证。论文基于Budyko水量平衡法和新增水库模块的分布式水文模型(DHSVM)法量化了气候变化和下垫面变化对青海省北川河流域径流变化的贡献。结果表明:① 自1960年以来流域出口流量以每年0.037 m3/s的趋势下降,突变年份发生在1969年。② 2种方法的分析结果均表明,年代际尺度上,气候变化对径流影响的贡献率由高到低依次为:1990—1999年>2000—2009年>1970—1979年>1980—1989年=2010—2019年,且下垫面变化是1970—2019年流域出口径流变化的主导因素,对应的贡献率分别为94.58% (Budyko法)和65.68% (DHSVM法)。③ Budyko方法只能揭示流域整体的变化,而DHSVM方法能够体现水文过程变化的时空差异,模型结果表明上中游、下游地区的年平均径流变化分别受气候变化、下垫面变化主导;流域出口处月径流变化则对下垫面条件中的水库调节更敏感。此外,文中就2种方法量化结果差异的原因也展开了讨论。  相似文献   
262.
He  Chunyang  Zhang  Jinxi  Liu  Zhifeng  Huang  Qingxu 《地理学报(英文版)》2022,32(3):537-559
Journal of Geographical Sciences - Land use/cover change (LUCC) is the foundation and frontier for integrating multiple land surface processes. This paper aims to systematically review LUCC...  相似文献   
263.
地理国情普查项目使用的高分影像质量的良莠不齐给地表覆盖数据生产带来了巨大障碍。本文剖析了目前收集到的高分影像资料的主要缺陷,如多分辨率、多传感器、多年份和跨季节,给地表覆盖数据解译带来极大的局限性;阐述了Landsat 8影像自身的特点,如像幅面积大、获取周期短、波段信息丰富,同时提出利用Landsat 8影像辅助解译的思路,并通过试验验证这种方法的可行性。  相似文献   
264.
李巍  翟亮  葛小三  孙恒宇 《东北测绘》2014,(2):74-76,79
地表覆盖的空间变化可以反映人类的生存环境,其空间数据的相关性也反映着一些重要信息。在维多利亚州中,耕地一直占着比较大的比重,本文根据landsat TM影像分类得到地表覆盖数据,发现各地表覆盖间类型间的关系,并结合DEM数据研究耕地在维多利亚州的空间分布特点。  相似文献   
265.
白中洁 《东北测绘》2014,(6):159-161
地理国情监测不仅扩大了测绘行业的内涵,更重要的是,对我国总体布局和规划提供了可靠的依据。目前,在全国范围内逐步开展地理国情普查工作,我分院按照安排,以厦门市为试点,对其进行了外业的调查与核查工作。结合实地作业情况来看,可以在地理国情普查内容与指标基本不变的前提下,依据地域的不同增加分类或修改部分类别的内涵。为今后全面普查工作的顺利开展,对现有的作业方式和作业内容都应有一定的规范。  相似文献   
266.
Winter conditions play an important role for the largest lake in Europe—Lake Ladoga. The ice cover lasts for 171 ± 3 days on average from the early November until the mid‐May. We investigated the ice regime of Lake Ladoga using a constructed ice database of aircraft surveys and satellite images. More than 1250 surveys of the lake's ice cover from 1943 to 2010 were collected and analysed to determine mean and extreme ice conditions for winters of different types of severity. The time series of ice cover percentage over the lake was plotted. On average, 18 observational ice charts were made every winter. Individual ice phenology records show considerable year‐to‐year variation. For this reason, records typically have been combined and analysed as groups (categories). Extremely cold winters were determined as winters with complete ice cover that lasts more than three months which is approximately 90% quartiles from all winters with complete ice cover. The lake surface was completely covered with ice for more than three months during 5 seasons. Extremely warm winters when the maximum ice cover was less than 70% of the lake area occurred during 5 seasons as well. A basic relationship between the winter severity as winter maximum of accumulated freezing degree‐days (AFDD) and the earlier derived Relative Ice Cover Index (RICI) was established. We have used teleconnection indices such as North Atlantic Oscillations (NAO) and Arctic Oscillation (AO) for the period from October to May for estimation of different types of Lake Ladoga's ice conditions. The AO index in winter months and local winter maximum of AFDD explained much of the interannual variation in ice cover. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
267.
The main objective of this study was to assess the impact of a suspended cover on the evaporation loss of an agricultural water reservoir (AWR). To this aim, a detailed data collection was carried out in a typical AWR located in south‐eastern Spain during 2 consecutive years. During the first year, the reservoir remained uncovered, while during the second year it was covered with a double black polyethylene (PE) shade cloth. On an annual scale, it was observed that the cover can provide a reduction of evaporation loss of 85%. Two approaches, energy balance and mass transfer, were used to analyse the effect of the cover on the evaporation process. Important modifications were observed on the magnitude, sign, annual trend and relative weight of the components of the energy balance. The changes were ascribed to the strong reduction of net radiation and to the substantial weight of the heat storage and sensible heat flux in the energy balance. A relevant finding was the contrast between the patterns of the annual evaporation curve for open‐water and covered conditions. The mass transfer approach allowed discriminating between the wind‐ and radiation‐shelter effects on the evaporation term. The reduction in water‐to‐air vapour deficit was the main factor explaining the high efficiency of the cover, whereas the reduction of the mass transfer coefficient was a modulating factor that accounted for the wind‐shelter effect. Overall, both approaches provided a sound basis to describe and explain the physical mechanisms underlying the high performance of the tested cover. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
268.
The southwestern Adirondack region of New York receives among the highest rates of atmospheric nitrogen (N) deposition in the USA. Atmospheric N deposition to sensitive ecosystems, like the Adirondacks, may increase the acidification of soils through losses of exchangeable nutrient cations, and the acidification of surface waters associated with enhanced mobility of nitrate (NO3?). However, watershed attributes, including surficial terrestrial characteristics, in‐lake processing, and geological settings, have been found to complicate the relationships between atmospheric N deposition and N drainage losses. We studied two lake‐watersheds in the southwestern Adirondacks, Grass Pond and Constable Pond, which are located in close proximity (~26 km) and receive similarly high N deposition, but have contrasting watershed attributes (e.g. wetland area, geological settings). Since the difference in the influence of N deposition was minimal, we were able to examine both within‐ and between‐watershed influences of land cover, the contribution of glacial till groundwater inputs, and in‐lake processes on surface water chemistry with particular emphasis on N solutes and dissolved organic carbon (DOC). Monthly samples at seven inlets and one outlet of each lake were collected from May to October in 1999 and 2000. The concentrations of NO3? were high at the Grass Pond inlets, especially at two inlets, and NO3? was the major N solute at the Grass Pond inlets. The concentrations of likely weathering products (i.e. dissolved Si, Ca2+, Mg2+, Na+) as well as acid neutralizing capacity and pH values, were also particularly high at those two Grass Pond inlets, suggesting a large contribution of groundwater inputs. Dissolved organic N (DON) was the major N solute at the Constable Pond inlets. The higher concentrations of DON and DOC at the Constable Pond inlets were attributed to a large wetland area in the watershed. The DOC/DON ratios were also higher at the Constable Pond inlets, possibly due to a larger proportion of coniferous forest area. Although DON and DOC were strongly related, the stronger relationship of the proportion of wetland area with DOC suggests that additional factors regulate DON. The aggregated representation of watershed physical features (i.e. elevation, watershed area, mean topographic index, hypsometric‐analysis index) was not clearly related to the lake N and DOC chemistry. Despite distinctive differences in inlet N chemistry, NO3? and DON concentrations at the outlets of the two lakes were similar. The lower DOC/DON ratios at the lake outlets and at the inlets having upstream ponds suggest the importance of N processing and organic N sources within the lakes. Although an inverse relationship between NO3? and DOC/DON has been suggested to be indicative of a N deposition gradient, the existence of this relationship for sites that receive similar atmospheric N deposition suggest that the relationship between NO3? and the DOC/DON ratio is derived from environmental and physical factors. Our results suggest that, despite similar wet N deposition at the two watershed sites, N solutes entering lakes were strongly affected by hydrology associated with groundwater contribution and the presence of wetlands, whereas N solutes leaving lakes were strongly influenced by in‐lake processing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
269.
Climate warming and human disturbance in north‐western Canada have been accompanied by degradation of permafrost, which introduces considerable uncertainty to the future availability of northern freshwater resources. This study demonstrates the rate and spatial pattern of permafrost loss in a region that typifies the southern boundary of permafrost. Remote‐sensing analysis of a 1·0 km2 area indicates that permafrost occupied 0·70 km2 in 1947 and decreased with time to 0·43 km2 by 2008. Ground‐based measurements demonstrate the importance of horizontal heat flows in thawing discontinuous permafrost, and show that such thaw produces dramatic land‐cover changes that can alter basin runoff production in this region. A major challenge to northern water resources management in the twenty‐first century therefore lies in predicting stream flows dynamically in the context of widely occurring permafrost thaw. The need for appropriate water resource planning, mitigation, and adaptation strategies is explained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
270.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号