首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   13篇
  国内免费   4篇
地球物理   56篇
地质学   13篇
海洋学   2篇
综合类   4篇
自然地理   7篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   3篇
  2019年   7篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2010年   4篇
  2009年   1篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1954年   1篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
51.
辽宁地区震群序列统计特征及预测意义研究   总被引:1,自引:0,他引:1  
系统研究了1970年以来辽宁及邻区发生的25次震群活动,总结了辽宁地区震群活动的参数特征,探讨了该地区震群活动与未来中强震的关系。结果表明:1研究区的25次震群中,最大地震优势发生时段在震群出现后3天内的占68%,84%的震群中最大地震与次大地震的震级差≤0.5级,平均为0.35。80%的震群持续活动时间约2个月;2震群中最大地震的震级越大,相应地2、3级地震频次也越多,通常1个4级左右的震群,2级地震频次平均约为28,3级地震平均约为6;3当震群中3、4级地震频次分别≥10和4,同时序列的b值为0.6~0.9,此时可判定震群为前兆震群。未来中强震3要素的判定依据为:发震时间为震群开始后1年内,平均6个月;震中距离震群所在地约0~400km,平均为180km;最大强度为G-R预测的最大地震震级加2.0级。当b0.5时,震群有可能为前震序列,即震群开始后1~20天内原地有发生M≥5地震的危险;425次震群中的80%在震群出现1年后对应了M≥4.6地震,空间上辽宁内陆的震群对辽南和唐山地区的M≥4.6地震有较好的指示,长岛和黑山岛附近海域的震群对渤海海峡及其附近地区的M≥4.6地震有较好的指示。  相似文献   
52.
地震序列类型,地震序列b值与地震大形势关系初探   总被引:12,自引:1,他引:12  
焦远碧 《地震》1998,18(1):33-40
根据最大地震与次大地震震级差将地震序列划分为孤立型,主余型,双震型和多震型4种。通过我国大陆143个序列划分结果,孤立型占14%,主余型占59%,双震型占13%,多震型占14%,地震序列b值与主震震级和序列类型有关,在类型要同的情况下主震震级越大序列b值越高,在主震震级相近的序列中孤立型序列b值最小,主余型和双震型居中且差别不大,多震型b值在7级和6级地震序列中最大的,根据实验结果探讨了序列b值变  相似文献   
53.

在油田水力压裂微地震事件定位结果的基础上,结合有效微地震事件的时空分布、震级大小、地震矩、震源半径、应力降和b值等地震学参数进行综合研究,并结合研究区域的地质背景和测井资料对水力压裂诱发的裂缝网络进行几何形态分析和应力解释.本文提出的微地震综合分析解释方法可对压裂后储层物性进行综合评价,有利于对储层改造效果进行预测,对油田的水力压裂施工具有指导意义.

  相似文献   
54.
55.
56.
We employed layered model joint hypocentral determination (JHD) with station corrections to improve location identification for the 26 January, 2001 Mw 7.7 Bhuj early and late aftershock sequence. We relocated 999 early aftershocks using the data from a close combined network (National Geophysical Research Institute, India and Center for Earthquake Research Institute, USA) of 8–18 digital seismographs during 12–28 February, 2001. Additionally, 350 late aftershocks were also relocated using the data from 4–10 digital seismographs/accelerographs during August 2002 to December 2004. These precisely relocated aftershocks (error in the epicentral location<30 meter, error in the focal depth estimation < 50 meter) delineate an east-west trending blind thrust (North Wagad Fault, NWF) dipping (~ 45°) southward, about 25 km north of Kachchh main land fault (KMF), as the causative fault for the 2001 Bhuj earthquake. The aftershock zone is confined to a 60-km long and 40-km wide region lying between the KMF to the south and NWF to the north, extending from 2 to 45 km depth. Estimated focal depths suggest that the aftershock zone became deeper with the passage of time. The P- and S-wave station corrections determined from the JHD technique indicate that the larger values (both +ve and -ve) characterize the central aftershock zone, which is surrounded by the zones of smaller values. The station corrections vary from −0.9 to +1.1 sec for the P waves and from −0.7 to +1.4 sec for the S waves. The b-value and p-value of the whole aftershock (2001–2004) sequences of Mw ≥ 3 are estimated to be 0.77 ± 0.02 and 0.99 ± 0.02, respectively. The p-value indicates a smaller value than the global median of 1.1, suggesting a relatively slow decay of aftershocks, whereas, the relatively lower b-value (less than the average b-value of 1.0 for stable continental region earthquakes of India) suggests a relatively higher probability for larger earthquakes in Kachchh in comparison to other stable continental regions of the Indian Peninsula. Further, based on the b-value, mainshock magnitude and maximum aftershock magnitude, the Bhuj aftershock sequence is categorized as the Mogi's type II sequence, indicating the region to be of intermediate level of stresses and heterogeneous rocks. It is inferred that the decrease in p-value and increase in aftershock zone, both spatially as well as depth over the passage of time, suggests that the decay of aftershocks perhaps could be controlled by visco-elastic creep in the lower crust.  相似文献   
57.
P.K. Khan   《Gondwana Research》2005,8(2):271-276
The seismic parameter ‘b’ has been computed over rectangular grid of dimension 0.3° ' 0.8° at four depths range: 0-13 km (first layer), 13.1-26 km (second layer), 26.1-39 km (third layer) and 39.1-52 km (fourth layer) beneath the Shillong Plateau area. The four depths were carefully selected based on the crustal structure and distribution of hypocentres. The dimension of each grid was chosen so as to have enough events that can represent the b-value at the respective layer. Finally, two-dimensional mapping was done at these depth-levels considering the respective b-value over each grid. This analysis includes viz., low b-value all through the first layer, and a trend of increasing b-value, which was initially towards north, changes to northwest. Eastern and western parts of the second and third layers document almost moderate b-values, whereas the north-south-oriented central part of layer second is apparently dominated by low b-values, which seems to divide the area broadly into three parallel zones based on b-values. In the deeper part (fourth layer) beneath the Shillong Plateau a moderate b-value that was initially trending towards north becomes high near the northeastern part. This phenomenon may be associated with higher heterogeneity of the medium, and interestingly, this region lies between the lower crust and upper mantle, possibly documents lower degree of seismic coupling, where the Shillong Plateau is being supported by the strong Indian lithosphere at these depths. In addition, minima were noted towards the southern parts of layers first, second and third, which may presumably be related with steeply Bouguer gravity anomaly. It is thus less clear that the occurrence of earthquakes beneath the Shillong Plateau whether is attributed to faults or lineaments at intermediate to deeper level. However, a correlation between high b-values in few parts of each layer and deep-seated minor faults cannot be ruled out.  相似文献   
58.
Spatial and temporal variations of seismic energy release and b -value are investigated in the Horn of Africa. The results indicate that the area around the Afar Depression and southern Sudan is at a higher stress level than the southern Red Sea and Gulf of Aden. The distribution of earthquakes in the vicinity of Afar shows a systematic pattern and suggests the existence of two microplates (blocks) centred about the Danakil and Aisha horsts.  相似文献   
59.
Yilmaztürk  Ahmet  Bayrak  Yusuf  ÇAKIR  ÖZCAN 《Natural Hazards》1998,18(3):253-267
Vertical and horizontal variations of the frequency of crustal earthquakes (h ≤ 35 km) that have occurred in and around Turkey are analyzed, using data from the Global Hypocenter Data Base and the IRIS data for the period 1964–1998. Fits of various magnitude scales to the observations have been used to construct a homogeneous catalogue. Depth distribution of the parameters derived from the Gutenberg–Richter relationship reveals that there is a depth dependence in the a- and b-values of the frequency distribution. It is observed that unknown focal depths (0, 10, 33 km) are dominant in the total seismicity reported, and give rise to substantial changes to the vertical distribution of these parameters. It is also observed that the parameters of either a or b alone may not be used as a measure of regional seismicity of the study area in which high and low seismic activity observed over short distances. In contrast, distribution of modal (a/b) values provides detailed images of the local areas presented by high and low seismic zones. This study presents evidence that low b-values are associated with major strike-slip faults, particularly exhibiting high apparent stresses. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
60.
江淮地区地震精定位及b值随深度的变化研究   总被引:1,自引:0,他引:1  
使用双差地震定位法,利用安徽及邻省50个地震台站记录的1976年到2008年的551次M_L≥2.3地震,其中初始定位有205个无深度数据,包括数字化资料和传统的模拟资料,共5464条P波走时资料。经重新定位后得到其中468次地震的基本参数。重新定位结果显示了本地区较精细的震中分布图像和震源深度剖面图像,震源深度优势分布在6—10km,平均深度为10km,部分震中位置与震源深度变化较大的地震向断裂带靠近。基于地震精确定位结果,系统地计算了不同深度段的b值,发现研究区b值随震源深度的增加具有系统减小的趋势,且在地壳10km左右的减小趋势最为突出。表明江淮地区的地壳分层结构相对明显,在地壳浅部(0—10km)以小震为主,大地震较少,故b值高;而在深处(10—25km),大地震相对较多,b值减小。这一现象的背后物理机制可以从地壳介质复杂程度与应力状态的变化得以解释,破裂易于在地壳介质相对均匀、岩石静压力较高的地壳深处成核形成大地震。推测江淮地区未来强震多发生在10km以下的地壳深部。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号