首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5092篇
  免费   1049篇
  国内免费   1387篇
测绘学   139篇
大气科学   527篇
地球物理   1592篇
地质学   3788篇
海洋学   540篇
天文学   81篇
综合类   299篇
自然地理   562篇
  2024年   55篇
  2023年   156篇
  2022年   259篇
  2021年   259篇
  2020年   244篇
  2019年   264篇
  2018年   228篇
  2017年   236篇
  2016年   243篇
  2015年   254篇
  2014年   323篇
  2013年   274篇
  2012年   360篇
  2011年   337篇
  2010年   276篇
  2009年   305篇
  2008年   316篇
  2007年   348篇
  2006年   322篇
  2005年   261篇
  2004年   269篇
  2003年   215篇
  2002年   194篇
  2001年   145篇
  2000年   175篇
  1999年   125篇
  1998年   164篇
  1997年   176篇
  1996年   138篇
  1995年   114篇
  1994年   104篇
  1993年   76篇
  1992年   85篇
  1991年   45篇
  1990年   51篇
  1989年   46篇
  1988年   35篇
  1987年   12篇
  1986年   19篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1978年   1篇
  1977年   2篇
  1954年   4篇
排序方式: 共有7528条查询结果,搜索用时 18 毫秒
981.
Ash clouds are one of the major hazards that result from volcanic eruptions. Once an eruption is reported, volcanic ash transport and dispersion (VATD) models are used to forecast the location of the ash cloud. These models require source parameters to describe the ash column for initialization. These parameters include: eruption cloud height and vertical distribution, particle size distribution, and start and end time of the eruption. Further, if downwind concentrations are needed, the eruption mass rate and/or volume of ash need to be known. Upon notification of an eruption, few constraints are typically available on many of these source parameters. Recently, scientists have defined classes of eruption types, each with a set of pre-defined eruption source parameters (ESP). We analyze the August 18, 1992 eruption of the Crater Peak vent at Mount Spurr, Alaska, which is the example case for the Medium Silicic eruption type. We have evaluated the sensitivity of two of the ESP – the grain size distribution (GSD) and the vertical distribution of ash – on the modeled ash cloud. HYSPLIT and Puff VATD models are used to simulate the ash clouds from the different sets of source parameters. We use satellite data, processed through the reverse absorption method, as reference for computing statistics that describe the modeled-to-observed comparison. With the grain size distribution, the three options chosen, (1) an estimated distribution based on past eruption studies, (2) a distribution with finer particles and (3) the National Oceanic and Atmospheric Administration HYSPLIT GSD, have little effect on the modeled ash cloud. For the initial vertical distribution, both linear (uniform concentration throughout the vertical column) and umbrella shapes were chosen. For HYSPLIT, the defined umbrella distribution (no ash below the umbrella), apparently underestimates the lower altitude portions of the ash cloud and as a result has a worse agreement with the satellite detected ash cloud compared to that with the linear vertical distribution for this particular eruption. The Puff model, with a Poisson function to represent the umbrella cloud, gave similar results as for a linear distribution, both having reasonable agreement with the satellite detected cloud. Further sensitivity studies of this eruption, as well as studies using the other source parameters, are needed.  相似文献   
982.
Groundwater characterization involves the resolution of unknown system characteristics from observation data, and is often classified as an inverse problem. Inverse problems are difficult to solve due to natural ill-posedness and computational intractability. Here we adopt the use of a simulation–optimization approach that couples a numerical pollutant-transport simulation model with evolutionary search algorithms for solution of the inverse problem. In this approach, the numerical transport model is solved iteratively during the evolutionary search. This process can be computationally intensive since several hundreds to thousands of forward model evaluations are typically required for solution. Given the potential computational intractability of such a simulation–optimization approach, parallel computation is employed to ease and enable the solution of such problems. In this paper, several variations of a groundwater source identification problem is examined in terms of solution quality and computational performance. The computational experiments were performed on the TeraGrid cluster available at the National Center for Supercomputing Applications. The results demonstrate the performance of the parallel simulation–optimization approach in terms of solution quality and computational performance.  相似文献   
983.
美国ESS200型电落锤是一种重复性好、便于运输和移动、可操作性强、经济实惠的绿色环保人工震源.可用于结构探测,又可用于地下介质物性变化的动态监测.在野外使用过程中,由于设计缺陷,容易发生故障,针对在使用过程中出现的一系列故障和问题,提出了针对性的分析和解决方案.并通过加装可编程逻辑控制器等处理措施,使之成为自动控制的编码震源.  相似文献   
984.
以苏鲁豫皖地区2005年至2008年四期地磁矢量场的观测数据为基础,分别建立了该区域的F、D、I三个独立分量四期的地磁异常场模型。通过对郯庐断裂带中段地磁异常场时空动态演化特征分析,发现该区域的F、D、I分量地磁异常场形态在2005年11月九江地震前后出现了较大程度的变化,甚至出现了地磁正负异常场的反转,从2007年春季至2008年春季,该区域地磁异常场分布形态基本保持稳定。  相似文献   
985.
主要讨论超松弛迭代法反演震源破裂过程解的稳定性。在精确反演的基础上,分别对数据扰动和模型扰动进行分析,用MATLAB作图进行对比并得出最后的结论:超松弛迭代法反演震源破裂过程的结果是可靠的。  相似文献   
986.
Talat  Ahmad  Kabita C.  Longjam  Baishali  Fouzdar  Mike J.  Bickle  Hazel J.  Chapman 《Island Arc》2009,18(1):155-174
The Sakoli Mobile Belt comprises bimodal volcanic rocks that include metabasalt, rhyolite, tuffs, and epiclastic rocks with metapelites, quartzite, arkose, conglomerate, and banded iron formation (BIF). Mafic volcanic rocks are tholeiitic to quartz‐tholeiitic with normative quartz and hypersthene. SiO2 shows a large compositional gap between the basic and acidic volcanics, depicting their bimodal nature. Both the volcanics have distinct geochemical trends but display some similarity in terms of enriched light rare earth element–large ion lithophile element characteristics with positive anomalies for U, Pb, and Th and distinct negative anomalies for Nb, P, and Ti. These characteristics are typical of continental rift volcanism. Both the volcanic rocks show strong negative Sr and Eu anomalies indicating fractionation of plagioclases and K‐feldspars, respectively. The high Fe/Mg ratios for the basic rocks indicate their evolved nature. Whole rock Sm–Nd isochrons for the acidic volcanic rocks indicate an age of crystallization for these volcanic rocks at about 1675 ± 180 Ma (initial 143Nd/144Nd = 0.51017 ± 0.00017, mean square weighted deviate [MSWD] = 1.6). The εNdt (t = 2000 Ma) varies between ?0.19 and +2.22 for the basic volcanic rock and between ?2.85 and ?4.29 for the acidic volcanic rocks. Depleted mantle model ages vary from 2000 to 2275 Ma for the basic and from 2426 to 2777 Ma for the acidic volcanic rocks, respectively. These model ages indicate that protoliths for the acidic volcanic rocks probably had a much longer crustal residence time. Predominantly basaltic magma erupted during the deposition of the Dhabetekri Formation and part of it pooled at crustal or shallower subcrustal levels that probably triggered partial melting to generate the acidic magma. The influence of basic magma on the genesis of acidic magma is indicated by the higher Ni and Cr abundance at the observed silica levels of the acidic magma. A subsequent pulse of basic magma, which became crustally contaminated, erupted as minor component along with the dominantly acidic volcanics during the deposition of the Bhiwapur Formation.  相似文献   
987.
Heat and mass transfer processes in the conduit of a thermochemical plume located beneath an oceanic plate far from a mid-ocean ridge (MOR) proceed under conditions of horizontal convective flows penetrating the plume conduit. In the region of a mantle flow approaching the plume conduit (in the frontal part of the conduit), the mantle material heats and melts. The melt moves through the plume conduit at the average velocity of flow v and is crystallized on the opposite side of the conduit (in the frontal part of the conduit). The heat and the chemical dope transferred by the conduit to the mantle flow are carried away by crystallized mantle material at the velocity v.The local coefficients of heat transfer at the boundary of the plume conduit are theoretically determined and the balance of heat fluxes through the side of the plume conduit per linear meter of the conduit height. The total heat generation rate, transmitted by the Hawaiian plume into the upper and lower mantle, is evaluated. With the use of regular patterns of heat transfer in the lower mantle, which is modeled on the horizontal layer, heated from below and cooled from above, the diameter of the plume source, the kinematic viscosity of the melt in the plume conduit, and the velocity of horizontal lower-mantle flows are evaluated and the dependences of the temperature drop, viscosity and Rayleigh number for the lower mantle on the diameter of the plume source are presented.  相似文献   
988.
系统的元素及多元同位素地球化学研究表明, 以西乌珠穆沁旗地区和塔河地区为代表的部分大兴安岭晚中生代火山岩地幔源区组分中存在明确的古老地块物质贡献.与大兴安岭其他地区晚中生代火山岩源区组分主要为新生地壳物质特征相比, 塔河火山岩中的碎屑锆石记录了晚元古代和早古生代年龄; 配套的微量元素和多元同位素特征则清晰地指示了上述两个地区火山岩的源区组分是在继承古老地块富集地幔的基础上叠加了古生代岛弧等新生地壳物质.上述研究首次为兴蒙造山带内存在前寒武古老地体以及该造山带组成特征提供了明确和系统的深部地球化学制约.晚中生代全球深部事件以及蒙古-鄂霍茨克洋闭合后的伸展作用, 触发岩石圈地幔部分熔融, 是本区晚中生代强烈火山活动成因可能的地球动力学背景.   相似文献   
989.
利用1967年航片数据、1986和2000年两期遥感TM数据,对长江黄河源区高寒生态系统分布格局变化进行了分析,并结合源区气候变化观测数据,分析了源区高寒生态系统变化与气候的关系和陆面生态系统变化对源区水文过程的影响。结果表明:过去40 a来,长江源区高覆盖草甸、高覆盖草原和湿地面积分别减少了13.5%、3.6%和28.9%,黄河源区高覆盖草甸、高覆盖草原和湿地面积分别减少了23.2%、7.0%和13.6%,江河源区低覆盖草甸、草原和沙漠草地面积均不同程度地增加;长江、黄河源区气温变化率分别为0.27和0.31℃/10a,降水的变化趋势在长江、黄河源区分别以0.36和0.07 mm/a的速率递增,气温持续升高和由此引起的冻土退化是导致高寒生态系统退化的主要因素之一;陆面生态系统退化对源区水文过程影响显著,在降水没有明显变化的情况下,长江、黄河源区径流系数分别由1960年代的0.16和0.28下降到21世纪的0.12和0.21,且降水-径流关系减弱,出源径流趋于减少,洪水发生频率显著增加,水源涵养指数持续减小。如何应对气候变化,维护源区高寒生态系统功能,已成为迫切需要关注和解决的关键问题。  相似文献   
990.
断层构造对北票矿区煤层气地表泄漏的影响   总被引:2,自引:0,他引:2  
针对北票矿区台吉井田断层地质分布状况和关井后煤层气由地表泄漏的实际情况,从数值分析角度,利用ANSYS有限元软件,建立三维有限元模型,模拟了不考虑断层构造和考虑断层构造情况下,不同断层组合在开采前后的地应力场和位移场变化规律,得到了开采前后断层剖面应力场和特定水平剖面垂向位移等值线图等模拟结果,及一些有价值的结论。断层构造对开采前后应力场和位移场均有影响,应力场数值模拟得到采空区为原生气源集聚区;断层与采空区交界处的上、下端头位置所受应力最大,导致富集于采空区的煤层气向此处扩散运移,并通过断层中贯通裂隙向地表逸散,断层即是煤层气向地表逸散的重要通道;采空区上方的冒落带、裂隙带和弯曲带是次生气源集聚区。该数值模拟为搞清断层构造对北票矿区煤层气泄漏规律的影响和原生、次生气源集聚位置的确定提供了科学依据,对有效进行煤层气开发利用具有一定指导意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号