首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   8篇
  国内免费   14篇
地球物理   4篇
地质学   86篇
综合类   1篇
  2022年   2篇
  2021年   1篇
  2019年   3篇
  2018年   3篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   8篇
  2012年   6篇
  2011年   1篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  1999年   2篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1983年   1篇
排序方式: 共有91条查询结果,搜索用时 296 毫秒
81.
Abstract

The early Tertiary evolution of the Shuswap metamorphic core complex is characterised by low-angle crustal detachments and nearly isothermal decompression followed by rapid cooling of rocks in the footwall of the detachments. Previous work as well as our own observations suggest that Paleogene late-orogenic extension produced the main tectonic features of the region. Furthermore, structural analysis of the migmatites and published geochronological data indicate that partial melting of the mid- to lower crust was coeval with extension in the upper crustal levels, suggesting that these two processes are linked genetically. Consequently, we propose that the formation of the Shuswap metamorphic core complex corresponds to late-orogenic gravitational collapse of the Canadian Cordillera accommodated by normal faulting of the brittle upper crust and by ductile thinning of the mid- to lower crust. The initiation and amplification of extension during the Paleocene in the Shuswap metamorphic core complex are tentatively related to partial melting of the thickened crust which caused drastic mechanical weakening of the crust.  相似文献   
82.
83.
《International Geology Review》2012,54(11):1229-1240
Intrusion-bordering migmatites comprise a substantial, high-grade metamorphic part of the Alvand aureole near Hamadan, western Iran. Abundant Al-rich metasedimentary rocks and various granites occur in this region. Migmatites consist of Bt?+?Sill?+?Grt?+?Crd?+?Sp ± Opx melanosomes and Grt?+?Pl?+?Kfs?+?Qtz leucosomes. These assemblages reflect upper pyroxene hornfels to lower sanidinite facies physical conditions. The appearance of orthopyroxene in these rocks marks the pressure–temperature transition from the pyroxene hornfels to the sanidinite facies. Field relations, mineral parageneses, and pressure–temperature estimates suggest that intrusion of granitic magma and concomitant partial melting of metasedimentary wallrock units were the main processes involved in the migmatization. Peak metamorphism took place at 650–750°C and ~2–4 kbar; such high-temperature/low-pressure metamorphism was caused mainly by advective heat derived from the emplacement of plutons. Regional metamorphism, granitic magmatism, and contact metamorphism reflected arc construction and collision during subduction of a Neotethyan seaway and subsequent Late Cretaceous–early Tertiary oblique collision of Afro-Arabia (Gondwana) with the Iranian microcontinent.  相似文献   
84.
A detailed field study reveals a gradual transition from high‐grade solid‐state banded orthogneiss via stromatic migmatite and schlieren migmatite to irregular, foliation‐parallel bodies of nebulitic migmatite within the eastern part of the Gföhl Unit (Moldanubian domain, Bohemian Massif). The orthogneiss to nebulitic migmatite sequence is characterized by progressive destruction of well‐equilibrated banded microstructure by crystallization of new interstitial phases (Kfs, Pl and Qtz) along feldspar boundaries and by resorption of relict feldspar and biotite. The grain size of all felsic phases decreases continuously, whereas the population density of new phases increases. The new phases preferentially nucleate along high‐energy like–like boundaries causing the development of a regular distribution of individual phases. This evolutionary trend is accompanied by a decrease in grain shape preferred orientation of all felsic phases. To explain these data, a new petrogenetic model is proposed for the origin of felsic migmatites by melt infiltration from an external source into banded orthogneiss during deformation. In this model, infiltrating melt passes pervasively along grain boundaries through the whole‐rock volume and changes completely its macro‐ and microscopic appearance. It is suggested that the individual migmatite types represent different degrees of equilibration between the host rock and migrating melt during exhumation. The melt topology mimicked by feldspar in banded orthogneiss forms elongate pockets oriented at a high angle to the compositional banding, indicating that the melt distribution was controlled by the deformation of the solid framework. The microstructure exhibits features compatible with a combination of dislocation creep and grain boundary sliding deformation mechanisms. The migmatite microstructures developed by granular flow accompanied by melt‐enhanced diffusion and/or melt flow. However, an AMS study and quartz microfabrics suggest that the amount of melt present did not exceed a critical threshold during the deformation to allow free movements of grains.  相似文献   
85.
Estimated variations in mineral concentrations across leucosomes suggest that leucosomes are generated during anatexis by a diffusive exchange between the leucosome and the mesosome, and not by the migration of melt from the mesosome. However, the presence of melt is a precondition for the diffusive exchange to take place. Initially a crack is formed due to shear stress. The formation of a crack allows a diffusive exchange to take place through the melt, which causes melting of minerals situated near the crack. The diffusive exchange of material is less efficient in the mesosome where the melt is isolated at grain corners and edges. The microcline enrichment of some granitic leucosomes is thought to be due to the diffusive depletion of the mesosome caused by growth of alkali feldspar during the consolidation of the migmatite. In general, it seems unnecessary to invoke concentrations of water in the leucosome or the intrusion of external fluids or magmas for migmatite formation.  相似文献   
86.
A suite of migmatites in uppermost amphibolite facies schists of the Koettlitz Group exposed in the Taylor Valley, Antarctica, provides direct evidence of the behaviour of partially molten rock during syn-anatectic deformation. The geometry of the migmatites is directly related to their position relative to the hinge of a kilometre-scale antiform. Migmatitic rocks on the fold limbs are characterized by extensional shears and fractures, filled with leucosome material, that intersect the pervasive foliation and millimetre-thick stromatic leucosomes. Vein- and dyke-like leucosomes become more common and thicker from the limb to the hinge region of the antiform. Rocks characterized by high leucosome-to-rock ratios near the antiform hinge are xenolithic in appearance. Major parasitic folds within the hinge contain leucogranite 'microplutons' up to 50 m across beneath refractory 'cap-rock' layers.
Angular boudinage structures in schists surrounded by leucosomes indicate a relatively low yield strength in the leucosome, which is compatible with a molten rather than solid leucosome. Leucogranite-bearing extensional shears and fractures indicate that repeated extensional fracturing and shearing promoted by high fluid (melt) pressure is an important mechanism of melt segregation. Dilation in the hinges of developing folds aids the migration of melt into fold hinges and the development of 10–50-m-wide 'microplutons' of xenolith-rich leucogranite.
Lack of vapour-absent melting and consequent low melt-to-rock ratios allowed the Koettlitz Group to maintain its structural coherency on a kilometre scale. Consequently, leucosome 'microplutons' did not exceed 50 m in width, and therefore observed leucosomes have not contributed to the development of adjacent plutonic-scale granitoids.  相似文献   
87.
We have analyzed the Sm–Nd and Rb–Sr whole-rock and mineral isotope systematics of garnet peridotites and associated eclogites and migmatitic gneisses from the Nonsberg–Ulten zone of the Eastern Alps. The garnet peridotites include coarse-grained varieties, characterized by well-preserved to slightly modified mantle geochemical signatures, and finer-grained varieties enriched in amphibole and LILE. Hydration of some of the most strongly deformed, fine-grained peridotites by crustal fluids caused isotopic disequilibrium between the peridotite minerals, preventing accurate age determinations. The coarse-grained peridotites, the eclogites and the country migmatitic gneisses yield garnet–whole-rock and garnet–clinopyroxene Sm–Nd ages that indicate for all rock types an isotopic homogenization event at ca. 330 Ma. The similar ages suggest that all rock types shared a common history since the incorporation of the peridotites in the crust, and constrain the garnet-facies metamorphism of the peridotites, as well as partial melting of the crust, to an episode of crustal subduction at the end of the Variscan orogenic cycle.  相似文献   
88.
Migmatitic cordierite gneisses within the Achankovil Zone (AZ) of southern Pan‐African India record melt‐producing and subsequent melt‐consuming mineral reactions. Early mineral assemblages Bt‐Sil‐Qtz and Bt‐Sil‐Spl, deduced from inclusion textures in garnet prophyroblasts, break down via successive dehydration melting reactions to high‐T phase assemblages (e.g. Grt‐Crd‐Liq, Opx‐Liq, Spl‐Crd‐Liq). Later back reactions between the restite and the in situ crystallizing melt resulted in thin cordierite coronas separating garnet from the leucosome, and partial resorption of garnet to Opx‐Crd or Crd‐Bt‐Qtz symplectites. Leucosomes generally display a moderate (low‐strain gneisses) to strong (high‐strain gneisses) depletion of alkali feldspar attributed to mineral‐melt back reactions partly controlled by the degree of melt segregation. Using a KFMASH partial petrogenetic grid that includes a melt phase, and qualitative pseudosections for microdomains of high and low Al/Si ratios, the successive phase assemblages and reaction textures are interpreted in terms of a clockwise P–T path culminating at about 6–7 kbar and 900–950 °C. This P–T path is consistent with, but more detailed than published results, which suggests that taking a melt phase into account is not only a valid, but also a useful approach. Comparing P–T data and lithological and isotopic data for the AZ with adjacent East Gondwana fragments, suggests the presence of a coherent metasedimentary unit exposed from southern Madagascar via South India (AZ) and Sri Lanka (Wanni Complex) to the Lützow–Holm Bay in Eastern Antarctica.  相似文献   
89.
A method is proposed for adjusting the mass balance to characterize quantitatively the behaviour of minerals in anatexis. The method is based on an unconstrained simple mixing model that can be expressed as: where B , A 0, and A 1-n, are compositional vectors of segregate, source rock and source minerals, respectively. The most important concepts are: (1) degree of partial fusion: FMM= 1/a0; (2) mineral fractionation index: and (3) plagioclase differentiation index: . For a given mineral, the MFI values have the following meaning: (a) MFI <0: residual phase originated, at least partly, as a product of incongruent melting; (b) 0 > MFI <1: preferential retention in the residue; (c) MFI= 1: identical modal fraction in source and melt; (d) a0 > MFI > 1: preferential incorporation into the segregate, and (e) MFI > a0: external contribution to the anatectic system defined by a0 A 0. To test the method and illustrate its use, it was applied to two real problems of partial melting in the Peña Negra Anatectic Complex (Central Spain). The first is a very simple case of segregation of a diktyonitic neosome from an orthogneiss through partial melting located in vertical shear zones. This process is characterized by: (1) FMM= 0.51; (2) active incorporation of K-feldspar, plagioclase and biotite into the segregate; (3) disequilibrium melting of plagioclase; (4) residual behaviour of quartz and ilmenite. The second case concerns the formation of a cordierite-bearing granite from granodioritoid diatexites through an anatectic process, whose most salient characteristics are: (1) FMM= 0.45; (2) incongruent melting of biotite; (3) residual behaviour of plagioclase, which melted with a PDI of 1.22; (4) preferential incorporation of quartz into the segregate; (5) total extraction of K-feldspar from the residue.  相似文献   
90.
滇西云龙混合岩及其与锡矿化的关系   总被引:1,自引:0,他引:1  
本文通过岩石的结构构造、岩石化学、矿物学、微量元素地球化学、同位素地质学等研究认为,滇西云龙铁厂锡矿区含锡围岩是崇山群(前寒武纪)在加里东期经过混合岩化作用形成的;混合岩成岩方式以交代作用为主,主要表现为多期多阶段的钾化、钠化、硅化。早期深部来源的热液诱发了混合岩化作用的发生,混合岩化热液主要来源于原岩本身分异出的富含钾、钠、硅的流体,交代作用的过程中硅、钠、钾起主导作用。空间上与混合岩密切伴生的锡矿床是混合岩化作用的最终产物。崇山群是锡的矿源层,混合岩化作用使地层中锡活化转移并富集在有利部位形成工业矿床。笔者将这类矿床称之为混合岩型锡矿。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号