首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1380篇
  免费   151篇
  国内免费   282篇
测绘学   25篇
大气科学   107篇
地球物理   352篇
地质学   414篇
海洋学   570篇
天文学   6篇
综合类   99篇
自然地理   240篇
  2024年   13篇
  2023年   51篇
  2022年   61篇
  2021年   65篇
  2020年   57篇
  2019年   94篇
  2018年   49篇
  2017年   55篇
  2016年   54篇
  2015年   61篇
  2014年   85篇
  2013年   104篇
  2012年   74篇
  2011年   71篇
  2010年   83篇
  2009年   76篇
  2008年   75篇
  2007年   64篇
  2006年   83篇
  2005年   73篇
  2004年   73篇
  2003年   47篇
  2002年   59篇
  2001年   38篇
  2000年   26篇
  1999年   30篇
  1998年   22篇
  1997年   22篇
  1996年   23篇
  1995年   15篇
  1994年   9篇
  1993年   13篇
  1992年   7篇
  1991年   6篇
  1990年   5篇
  1989年   3篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   17篇
  1984年   11篇
  1983年   10篇
  1982年   5篇
  1981年   7篇
  1978年   1篇
排序方式: 共有1813条查询结果,搜索用时 15 毫秒
291.
李兵  张永成  王森 《探矿工程》2019,46(2):35-39
以寺河矿区穿越采空区氮气钻井试验为背景,通过分析煤层取心测试数据,指出钻井穿越3号煤层采空区抽采9+15号煤层瓦斯的必要性。利用“三带”理论明确了3号煤层采空区顶板以上74.4 m及底板以下22.73 m为钻井漏失带,采用氮气钻井穿越该层段有助于安全高效施工;优化了穿越采空区氮气钻井的三开井身结构;根据穿越采空区氮气钻井工艺需要,配套设计了地面钻井工艺流程。氮气钻井工艺在寺河矿区试验的成功,证明该工艺的可行性,对穿越采空区钻井技术的研究和推广应用具有重要的指导意义。  相似文献   
292.
选取贵州百花湖入湖支流麦西河为对象,研究了上覆水—孔隙水—沉积物体系氮的形态差异,结果表明:麦西河上覆水中,以硝态氮(NO-3-N)为主,氨态氮(NH+4-N)次之,亚硝态氮(NO-2-N)最低;孔隙水中,溶解无机氮中以NH+4-N为主, NO-3-N次之, NO-2-N最低;沉积物中,总氮(TN)的含量为1110.67~4413.16mg/kg;固定态铵含量为34.56~170.05mg/kg,占TN的1.47%~6.25%;可交换态氮以NH+4-N为主, NO-3-N次之, NO-2-N最低。孔隙水NH+4-N是上覆水NH+4-N的2.65~19.51倍,上覆水NO-3-N是孔隙水NO-3-N的7.14~20.43倍。沉积物TN与孔隙溶解水无机氮(DIN)、孔隙水NH+4-N、沉积物可交换态氮和沉积物可交换性NH+4-N呈显著正相关;在沉积物中,可交换性NO-3-N与可交换性NH+4-N及可交换态氮呈显著正相关,可交换性NH+4-N与可交换态氮呈极显著正相关;孔隙水溶解无机氮与孔隙水NH+4-N呈极显著正相关。麦西河不同介质中氮的迁移关系则表现为:由于浓度梯度,上覆水中的NO-3-N扩散到孔隙水中,进而累积到沉积物中;沉积物的可交换性NH+4-N,进入孔隙水,最终扩散到上覆水中。   相似文献   
293.
我国氨的排放量和时空分布   总被引:46,自引:0,他引:46       下载免费PDF全文
孙庆瑞  王美蓉 《大气科学》1997,21(5):590-598
根据我国的实际情况讨论了各种氨排放源的排放因子,计算了各种氨源的贡献,以动物的贡献最大,占52%。1993 年我国氨的排放量为12 Mt,排放量最大的是河南、山东和四川,排放密度最大的是上海。在北京、广西、广东、湖南、江西和山东测定了大气氨的浓度,北京大气氨浓度有明显的季节变化,春季平均为16 μg/m3,夏季最高为41μg/m3,冬季只有3.2 μg/m3。一般夜间氨的浓度高于白天。测定了氨的垂直分布,并计算了氨浓度的标高。  相似文献   
294.
生物降解原油中吡咯氮化合物组成的变化   总被引:1,自引:0,他引:1  
渤海海域地区近50个原油样品中性氮组分的GC/MS定量分析资料表明,油藏中的生物降解作用对原油的吡咯氮化合物含量和分布有明显影响。经与同源未降解原油比较,各种烷基咔唑和苯并咔唑在3。4级中轻度降解油中就出现明显降解迹象,随生物降解程度增高其含量逐渐减少,在6—8级严重降解油中它们的总含量降低到原有的五分之一左右。在3—4级中轻度降解油中,裸露型甲基咔唑异构体更容易被微生物侵袭而代谢,抗生物降解能力按1-甲基咔唑〉4-甲基咔唑〉2-、3-甲基咔唑顺序递减;当降解程度更高时,这些化合物降解速率相当,1-/4-MCA等比值相对稳定。低-中等降解阶段,不同类型二甲基咔唑异构体的抗生物降解能力也存在明显差异性,呈屏蔽型〉半屏蔽型〉裸露型降低;在生物降解水平进一步增高时,这些异构体之间的相对含量变化不大。生物降解作用对苯并咔唑系列化合物分布的影响具有不确定性,且随降解程度的增加变得更为显著,降解油中【a】/[c】苯并咔唑比值或增高或降低。生物降解原油中吡咯氮化合物的组成变化,使降解油的二次运移示踪面临新的问题。  相似文献   
295.
太湖蓝藻水华暴发机制与控制对策   总被引:2,自引:0,他引:2  
湖泊蓝藻水华暴发由于引发水生态系统的灾害和饮用水安全风险而成为国内外研究的热点之一.太湖蓝藻水华暴发原因多样,其中蓝藻自身的特性是水华暴发的内因,太湖的地理、水文和气象特征为蓝藻水华暴发提供了合适的温度和水动力条件,是蓝藻水华暴发的外因,湖泊草-藻型生态系统的转变以及氮、磷营养盐的高负荷输入更利于蓝藻生长,湖泊氮、磷营养盐四重循环是蓝藻水华不断暴发的维持机制,蓝藻水华暴发与氮、磷营养盐浓度之间存在交互作用关系.太湖蓝藻水华的控制应以陆源控源截污为基础,增加湖泊营养盐输出为重点,实现疏堵有机结合,其中恢复水生植被,重建草-藻结合型水生态系统是太湖湖泊生态修复的关键所在.  相似文献   
296.
自2007年太湖蓝藻水华引起无锡供水危机后,在太湖流域及湖区开展了一系列综合治理措施以改善太湖水环境质量.本研究在太湖梅梁湾和贡湖湾各设置3个采样点,自2010年4月起每月2次监测太湖水质.结合水文气象数据及无锡市环境监测站和太湖局的同期数据,明确太湖自2010年以来,水质整体良好,总氮浓度在波动中呈现下降的趋势,总磷浓度在2014年前也是在波动中呈现下降的趋势,但在2015和2016年有所回升,回升比例约为15%~20%.2015和2016年总磷浓度出现回升的主要原因是这2年的2次大洪水过程携带大量N、P进入太湖湖区,洪水消退过程中,N大多以溶解态排泄出湖区,而P则由于大多数以颗粒态存在,逐渐沉积到湖泊中,随着微囊藻生长消耗水体溶解态P以及水体pH和溶解氧的变化逐渐释放到太湖水体中.  相似文献   
297.
我国海洋沉积物的研究近几年发展较快,但是缺少有定值的氮、有机碳标准物质。本文针对及其匮乏的氮、有机碳国家二级标准物质进行了我国近海沉积物总氮(TN)、总碳(TC)、总有机碳(TOC)含量的分析标准参考物质的研制。研究样品采自"我国近海海洋综合调查与评价"专项提供的表层沉积物,经过冷冻干燥、研磨至74μm,使用元素分析仪和氧化热解-气相色谱法分析总氮和总碳的含量;使用元素分析仪和氧化热解-电位法分析总有机碳的含量,制备了一系列16个有定值的总氮、总碳、总有机碳含量的近海沉积物标准物质。样品在均匀性检验中,F的实测值小于临界值,相对偏差较小,样品的均匀性较好。在稳定性检验方面,两年内多次测定的分析结果无方向性变化,统计计算结果显示稳定性良好。本文研制的这16个近海沉积物标准物质在3家实验室进行了联合定值,按照ISO导则35和国家一级标准物质研制规范,给出了该系列标准物质总氮、总碳、总有机碳含量的标准值和不确定度。这批标准物质分为不同海区,不同海区的标准物质又分为不同的沉积物类型,研制的不同海区不同沉积物类型的标准物质对现有的海洋沉积物标准物质进行了有效的补充。  相似文献   
298.
The seasonal and diurnal variations of ozone mixing ratios have been observed at Niwot Ridge. Colorado. The ozone mixing ratios have been correlated with the NO x (NO+NO2) mixing ratios measured concurrently at the site. The seasonal and diurnal variations in O3 can be reasonably well understood by considering photochemistry and transport. In the winter there is no apparent systematic diurnal variation in the O3 mixing ratio because there is little diurnal change of transport and a slow photochemistry. In the summer, the O3 levels at the site are suppressed at night due to the presence of a nocturnal inversion layer that isolated ozone near the surface, where it is destroyed. Ozone is observed to increase in the summer during the day. The increases in ozone correlate with increasing NO x levels, as well as with the levels of other compounds of anthropogenic origin. We interpret this correlation as in-situ or in-transit photochemical production of ozone from these precursors that are transported to our site. The levels of ozone recorded approach 100 ppbv at NO x mixing ratios of approximately 3 ppbv. Calculations made using a simple clean tropospheric chemical model are consistent with the NO x -related trend observed for the daytime ozone mixing ratio. However, the chemistry, which does not include nonmethane hydrocarbon photochemistry, underestimates the observed O3 production.  相似文献   
299.
沉积物中有机质的削减是黑臭水体治理的关键.Fenton(Fe^2++H2O2)试剂在有机污染废水和土壤原位修复中的应用广泛且效果良好;Fenton试剂也能很好地去除黑臭水体中的色度和浊度,但其氧化沉积物有机质的研究未见报道.为探究Fenton试剂对黑臭水体沉积物的氧化效果,本研究通过室内模拟实验用Fenton氧化法对黑臭河道沉积物进行处理,考察氧化过程沉积物特征和性质的变化;分析覆水后沉积物中污染物的释放特征,并和H2O2体系(无Fe^2+)进行比较.结果表明:Fenton体系显著提高了沉积物与上覆水的氧化还原电位,对黑臭河道沉积物中的有机质具有很强的氧化效率.在温度为28℃、H2O2为20%Q(Q为体系中沉积物有机质完全矿化的理论H2O2用量)和Fe^2+∶H2O2(摩尔比)为0.5∶1时,反应1 d,酸挥发性硫化物去除率为70.13%,沉积物总有机碳减少了22.14%,总有机氮减少了87.60%,生成了较多的铵态氮和硝态氮;由于铁对磷的钝化,沉积物中溶解性反应磷含量大幅减少.H2O2体系的氧化速度较Fenton体系慢,覆水后对体系中的Eh提高不明显.值得注意的是,Fenton体系会降低上覆水的pH,释放较多的铵态氮.需要联合其他技术(如微生物法),强化水体中有机质和氨氮的降解,以取得理想的修复作用.  相似文献   
300.
洱海叶绿素a浓度的季节动态和空间分布   总被引:3,自引:0,他引:3  
2010年5月至2011年4月,对洱海叶绿素a的季节动态、空间分布及其与环境因子的关系进行研究.结果表明,水体中叶绿素a浓度存在明显的季节变化,其变化范围为4.11~24.30μg/L,年平均值为10.4±6.5μg/L,最小值出现在2011年3月,最大值出现在2010年9月.叶绿素a浓度在夏、秋季较高,冬、春季较低.在空间变化上,叶绿素a浓度在南部湖区最大,其次是北部湖区,中部湖区最低.Pearson相关系数和主成分分析表明,洱海叶绿素a浓度在不同湖区中与水温和透明度均呈极显著相关.总氮在北部和南部湖区与叶绿素a浓度均存在一定的相关性,而总磷与叶绿素a浓度在南部湖区存在一定的相关性.根据修正的卡尔森营养状态指数,洱海综合TSI值为50.6,水质处于中营养状态.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号