首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7550篇
  免费   1299篇
  国内免费   678篇
测绘学   1452篇
大气科学   112篇
地球物理   1340篇
地质学   3410篇
海洋学   730篇
天文学   1547篇
综合类   399篇
自然地理   537篇
  2024年   13篇
  2023年   74篇
  2022年   230篇
  2021年   358篇
  2020年   301篇
  2019年   286篇
  2018年   171篇
  2017年   259篇
  2016年   252篇
  2015年   286篇
  2014年   479篇
  2013年   411篇
  2012年   453篇
  2011年   419篇
  2010年   335篇
  2009年   454篇
  2008年   472篇
  2007年   602篇
  2006年   461篇
  2005年   374篇
  2004年   357篇
  2003年   342篇
  2002年   287篇
  2001年   225篇
  2000年   243篇
  1999年   236篇
  1998年   227篇
  1997年   164篇
  1996年   170篇
  1995年   117篇
  1994年   91篇
  1993年   62篇
  1992年   68篇
  1991年   33篇
  1990年   54篇
  1989年   43篇
  1988年   36篇
  1987年   26篇
  1986年   19篇
  1985年   10篇
  1984年   6篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   5篇
  1978年   4篇
  1954年   4篇
排序方式: 共有9527条查询结果,搜索用时 24 毫秒
61.
We present magnetic field data collected over the Mid-Atlantic Ridge in the vicinity of the Atlantis Fracture Zone and extending out to 10 Ma-old lithosphere. We calculated a magnetization distribution which accounts for the observed magnetic field by performing a three-dimensional inversion in the presence of bathymetry. Our results show the well-developed pattern of magnetic reversals over our study area. We observe a sharp decay in magnetization from the axis out to older lithosphere and we attribute this decay to progressive low temperature oxidation of basalt. In crust which is 10 Ma, we observe an abrupt increase in magnetic field intensity which could be due to an increase in the intensity of magnetization or thickness of the magnetic source layer. We demonstrate that because the reversal epoch was of unusually long duration, a two-layer model comprised of a shallow extrusive layer and a deeper intrusive layer with sloping polarity boundaries can account for the increase in the amplitude of anomaly 5. South of the Atlantis Fracture Zone, high magnetization is correlated with bathymethic troughts at segment end points and lower magnetization is associated with bathymetric highs at segment midpoints. This pattern can be explained by a relative thinning of the magnetic source layer toward the midpoint of the segment. Thickening of the source layer at segment endpoints due to alteration of lower oceanic crust could also cause this pattern. Because we do not observe this pattern north of the fracture zone, we suggest it is a result of the nature of crustal formation process where mantle upwelling is focused. South of the fracture zone, reversals along discontinuity traces only continue to crust 2 Ma old. In crust >2 Ma, we observe bands of high, positive magnetization along discontinuity traces. We suggest that within the discontinuity traces, a high, induced component of magnetization is produced by serpentinized lower crust/upper mantle and this masks the contribution of basalts to the magnetic anomaly signal.  相似文献   
62.
Cohort abundance of walleye pollock (Theragra chalcogramma) is subject to strong interannual variation in the eastern Bering Sea, and this variation is known to be determined largely at the age-0 stage. We estimated the spatial distributions and densities of age-0 walleye pollock in five nursery areas around the eastern Bering shelf in three successive years (1997–1999) from acoustic survey data. Concurrently, we calculated estimates of the spatial distribution of euphausiids, a major prey of age-0 walleye pollock, and estimates of spatial overlap of groundfish predators with the age-0 walleye pollock. The analyses showed that all nursery areas had low densities of age-0 walleye pollock in 1997, which ultimately produced the weakest adult year-class. In the intermediate year of 1998, age-0 densities were low to medium, and in 1999, which produced the strongest of the three adult year-classes, all nursery areas had medium to high age-0 walleye pollock densities. Euphausiid distributions had a consistently positive spatial relationship with age-0 walleye pollock. Groundfish predator density ratios were positively related to age-0 walleye pollock density when age-0 walleye pollock were displaced relatively northward. Our results suggest that abundance of age-0 walleye pollock, and hence of adult cohorts in the eastern Bering Sea, can be predictable from a concise set of indicators: the densities of age-0 walleye pollock at nursery areas in mid- to late-summer, their spatial relationship to euphausiids and groundfish predators, and the latitudinal trend of their distributions. The 3 years 1997–1999 had significant differences of physical conditions in the eastern Bering Sea, and represent an advantageous framework for testing these hypotheses.  相似文献   
63.
64.
海底勘查技术的最新发展   总被引:4,自引:0,他引:4  
本文将介绍用于探测海底三维地质特征的海底勘查的最新发展。它主要包括海底地形测绘技术,海底形貌观测技术、海底地层声学探测技术等。  相似文献   
65.
焦明连 《海洋测绘》2005,25(4):32-34
针对《城镇地籍调查规程》和《城市测量规范》对光电测距(EDM)导线技术参数规定的不同,对低等光电测距导线的合理等级及各等级导线的技术标准进行了研究,并通过精度估算证明了各级导线精度的可靠性。  相似文献   
66.
67.
68.
The seismic expression of a salt-filled channel which cuts across the Mid North Sea High in Quadrant 37 is described, with features interpreted as being produced by salt-edge dissolution forming both eastern and western margins of the channel. The apparent half-graben nature of the channel is shown to be only superficial, and due to complex faulting associated with, but not defining, its western margin. The shallower faulting here is a Mesozoic to early Tertiary growth fault related to local dissolution of Zechstein salt. The dissolution effect appears in turn to have been localized by the presence of a deeper fault that was already downthrown to the east in Zechstein times, when it seems to have limited the eastward progradation of Zechstein shelf carbonates and anhydrites, and had probably ceased to move significantly before the onset of the Late Cimmerian erosional phase. The origin of this arcuate fault is tentatively ascribed to subsidence around a granite batholith. Zechstein salt originally spread some distance to the east and west of the channel; it was dissolved from the edges inwards, mainly before the Late Cretaceous, giving rise to a thicker Mesozoic sequence on parts of the flanks of the channel than in the middle. Besides providing an interesting structural case history, the features described have implications regarding Zechstein sedimentation, reservoir potential, the tectonic history of the North Sea, and the nature of the Mid North Sea High itself.  相似文献   
69.
动态基准实时测量系统的开发与应用   总被引:3,自引:0,他引:3  
介绍了动态基准实时测量系统的硬件组成、站点上全站仪棱镜组合安装与检测方法、系统软件的开发及特点,最后对系统在广州地铁某地铁站结构变形自动监测中的应用情况进行了阐述。通过实际应用表明该系统能应用在自动化、高精度的变形监测领域。  相似文献   
70.
The data from a recent magnetic compilation by Verhoefet al. (1991) off west Africa were used in combination with data in the western Atlantic to review the Mesozoic plate kinematic evolution of the central North Atlantic. The magnetic profile data were analyzed to identify the M-series sea floor spreading anomalies on the African plate. Oceanic fracture zones were identified from magnetic anomalies and seismic and gravity measurements. The identified sea floor spreading anomalies on the African plate were combined with those on the North American plate to calculate reconstruction poles for this part of the central Atlantic. The total separation poles derived in this paper describe a smooth curve, suggesting that the motion of the pole through time was continuous. Although the new sea floor spreading history differs only slightly from the one presented by Klitgord and Schouten (1986), it predicts smoother flowlines. On the other hand, the sea floor spreading history as depicted by the flowlines for the eastern central Atlantic deviates substantially from that of Sundvik and Larson (1988). A revised spreading history is also presented for the Cretaceous Magnetic Quiet Zone, where large changes in spreading direction occurred, that can not be resolved when fitting magnetic isochrons only, but which are evident from fracture zone traces and directions of sea floor spreading topography.Deceased 11 November 1991  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号