首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2697篇
  免费   446篇
  国内免费   921篇
测绘学   69篇
大气科学   540篇
地球物理   1116篇
地质学   1257篇
海洋学   627篇
天文学   72篇
综合类   94篇
自然地理   289篇
  2024年   19篇
  2023年   50篇
  2022年   100篇
  2021年   101篇
  2020年   136篇
  2019年   135篇
  2018年   119篇
  2017年   141篇
  2016年   153篇
  2015年   153篇
  2014年   165篇
  2013年   186篇
  2012年   164篇
  2011年   161篇
  2010年   160篇
  2009年   203篇
  2008年   212篇
  2007年   192篇
  2006年   202篇
  2005年   161篇
  2004年   151篇
  2003年   131篇
  2002年   108篇
  2001年   115篇
  2000年   109篇
  1999年   95篇
  1998年   111篇
  1997年   74篇
  1996年   74篇
  1995年   46篇
  1994年   27篇
  1993年   29篇
  1992年   24篇
  1991年   16篇
  1990年   9篇
  1989年   8篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   6篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
排序方式: 共有4064条查询结果,搜索用时 15 毫秒
931.
In situ zircon U–Pb ages and Hf isotopic compositions and whole rock geochemical and Sr–Nd–Pb isotopic data are presented for the Zijinshan alkaline intrusive complex from the Shanxi Province, western North China Craton. Salic rocks dominate the complex with the monzonite occurring in the outermost and pseudoleucite phonolitic breccia in the center. The intrusion took place 127 Ma ago with the earliest emplacement of monzonite and the termination of cryptoexplosive pseudoleucite phonolitic breccia. All rocks from this complex show LREE enrichment and HFSE depletion and exhibit enriched to depleted Sr–Nd isotopic features. The presence of inherited zircons and enriched Hf isotopic compositions in zircon rims, along with the enriched whole rock Sr–Nd isotopic compositions, indicate that the monzonite was formed through the mixing of lithospheric mantle-derived magma with lower crust-derived melts. The diopside syenite and nepheline-bearing diopside syenite are more depleted than the monzonite in terms of the Sr and Nd isotopes, together with their very high concentrations of LILE, we proposed that they originated from a mixed mantle source of enriched lithospheric mantle and depleted asthenosphere. The nepheline syenite has very low concentrations of MgO, Ni, Cr, suggesting that the magma underwent significant crystal fractionation. The most depleted Sr and Nd isotopic compositions ((87Sr/86Sr)i = 0.7036–0.7042, εNd(t) = − 0.2–0.3) among all rock types indicate a great contribution of asthenosphere to the nepheline syenite. The Zijinshan complex and its related crust-mantle interaction occurred in an extensional environment which resulted in continuously asthenospheric upwelling. Such an extensional environment might have been developed during the post-orogenic stage of the Late Paleozoic amalgamation of North China Craton with Mongolian continents and subsequent Mongol–Okhotsk ocean closure.  相似文献   
932.
本文揭示了自然界中可能存在的一种新的矿物和微生物交互作用形式,即微生物通过生物电化学作用参与到半导体 矿物的日光催化作用过程中。模拟日光光源下“产电”微生物与天然半导体矿物金红石交互实验结果显示,金红石的光催 化作用促进了矿物端元的反应速率,提高了电子在微生物和矿物之间的转移效率,使微生物电子传递链末端电子能量得到 提升。二者协同作用可提高微生物或半导体矿物单独作用时对污染物如Cr(Ⅵ)的还原处理效果。该研究为环境污染治理提 供了一种矿物与微生物协同作用新理念。  相似文献   
933.
民勤盆地地下水地球化学演化模拟   总被引:10,自引:4,他引:10  
根据稳定同位素分析,民勤盆地地下水在第四系总体补给环境较现代凉。在200m以下的深层地下水为晚更新世补给的古封存水,表现为还原环境。60m—120m左右的浅层水为古地下水与现代降水的混合水,但古地下水占的成分较多,部分水样为氧化环境。民勤盆地地下水地球化学特征主要形成于山区,在沿途运移过程强烈的蒸发浓缩作用占据主导地位,形成了浅层高矿化盐碱水,深层地下水活跃的阳离子交换作用形成高钠浓度水。通过利用PHREEEQC法对民勤盆地地下水化学进行质量平衡模拟,表明民勤盆地地下水水化学沿水流路径以HCO3^-、SO4^2-、Cl^-、Ca^2 、Na^ 升高为主要特征,方解石、白云石的饱和指数随水流路径有减少趋势,而石膏、芒硝和岩盐的饱和指数有增加的趋势:沿水流途径白云石、CO2、石膏、岩盐和芒硝溶解量逐渐增加是常量离子浓度升高的物质来源。  相似文献   
934.
An efficient finite–discrete element method applicable for the analysis of quasi‐static nonlinear soil–structure interaction problems involving large deformations in three‐dimensional space was presented in this paper. The present method differs from previous approaches in that the use of very fine mesh and small time steps was not needed to stabilize the calculation. The domain involving the large displacement was modeled using discrete elements, whereas the rest of the domain was modeled using finite elements. Forces acting on the discrete and finite elements were related by introducing interface elements at the boundary of the two domains. To improve the stability of the developed method, we used explicit time integration with different damping schemes applied to each domain to relax the system and to reach stability condition. With appropriate damping schemes, a relatively coarse finite element mesh can be used, resulting in significant savings in the computation time. The proposed algorithm was validated using three different benchmark problems, and the numerical results were compared with existing analytical and numerical solutions. The algorithm performance in solving practical soil–structure interaction problems was also investigated by simulating a large‐scale soft ground tunneling problem involving soil loss near an existing lining. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
935.
This paper presents a numerical formulation for a three dimensional elasto‐plastic interface, which can be coupled with an embedded beam element in order to model its non‐linear interaction with the surrounding solid medium. The formulation is herein implemented for lateral loading of piles but is able to represent soil‐pile interaction phenomena in a general manner for different types of loading conditions or ground movements. The interface is formulated in order to capture localized material plasticity in the soil surrounding the pile within the range of small to moderate lateral displacements. The interface is formulated following two different approaches: (i) in terms of beam degrees of freedoms; and (ii) considering the displacement field of the solid domain. Each of these alternatives has its own advantages and shortcomings, which are discussed in this paper. The paper presents a comparison of the results obtained by means of the present formulation and by other well‐established analysis methods and test results published in the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
936.
Scarcity of hydrological data, especially streamflow discharge and groundwater level series, restricts the understanding of channel transmission losses (TL) in drylands. Furthermore, the lack of information on spatial river dynamics encompasses high uncertainty on TL analysis in large rivers. The objective of this study was to combine the information from streamflow and groundwater level series with multi‐temporal satellite data to derive a hydrological concept of TL for a reach of the Middle Jaguaribe River (MJR) in semi‐arid north‐eastern Brazil. Based on this analysis, we proposed strategies for its modelling and simulation. TL take place in an alluvium, where river and groundwater can be considered to be hydraulically connected. Most losses certainly infiltrated only through streambed and levees and not through the flood plains, as could be shown by satellite image analysis. TL events whose input river flows were smaller than a threshold did not reach the outlet of the MJR. TL events whose input flows were higher than this threshold reached the outlet losing on average 30% of their input. During the dry seasons (DS) and at the beginning of rainy seasons (DS/BRS), no river flow is expected for pre‐events, and events have vertical infiltration into the alluvium. At the middle and the end of the rainy seasons (MRS/ERS), river flow sustained by base flow occurs before/after events, and lateral infiltration into the alluvium plays a major role. Thus, the MJR shifts from being a losing river at DS/BRS to become a losing/gaining (mostly losing) river at MRS/ERS. A model of this system has to include the coupling of river and groundwater flow processes linked by a leakage approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
937.
The rise in stream stage during high flow events (floods) can induce losing stream conditions, even along stream reaches that are gaining during baseflow conditions. The aquifer response to flood events can affect the geochemical composition of both near‐stream groundwater and post‐event streamflow, but the amount and persistence of recharged floodwater may differ as a function of local hydrogeologic forcings. As a result, this study focuses on how vertical flood recharge varies under different hydrogeologic forcings and the significance that recharge processes can have on groundwater and streamflow composition after floods. River and shallow groundwater samples were collected along three reaches of the Upper San Pedro River (Arizona, USA) before, during and after the 2009 and 2010 summer monsoon seasons. Tracer data from these samples indicate that subsurface floodwater propagation and residence times are strongly controlled by the direction and magnitude of the dominant stream–aquifer gradient. A reach that is typically strongly gaining shows minimal floodwater retention shortly after large events, whereas the moderately gaining and losing reaches can retain recharged floodwater from smaller events for longer periods. The moderately gaining reach likely returned flood recharge to the river as flow declined. These results indicate that reach‐scale differences in hydrogeologic forcing can control (i) the amount of local flood recharge during events and (ii) the duration of its subsurface retention and possible return to the stream during low‐flow periods. Our observations also suggest that the presence of floodwater in year‐round baseflow is not due to long‐term storage beneath the streambed along predominantly gaining reaches, so three alternative mechanisms are suggested: (i) repeated flooding that drives lateral redistribution of previously recharged floodwater, (ii) vertical recharge on the floodplain during overbank flow events and (iii) temporal variability in the stream–aquifer gradient due to seasonally varying water demands of riparian vegetation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
938.
The channel boundary conditions along the Lower Yellow River (LYR) have been altered significantly since the 1950s with the continual reinforcement and construction of both main and secondary dykes and river training works. To evaluate how the confined complex channel–floodplain system of the LYR responds to floods, this study presents a detailed investigation of the relationship between the tempo‐spatial distribution of sedimentation/erosion and overbank floods occurred in the LYR. For large overbank floods, we found that when the sediment transport coefficient (ratio of sediment concentration of flow to flow discharge) is less than 0.034, the bankfull channel is subject to significant erosion, whereas the main and secondary floodplains both accumulate sediment. The amount of sediment deposited on the main and secondary floodplains is closely related to the ratio of peak discharge to bankfull discharge, volume of water flowing over the floodplains, and sediment concentration of overbank flow, whereas the degree of erosion in the bankfull channel is related to the amount of sediment deposited on the main and secondary floodplains, water volume, and sediment load in flood season. The significant increase in erosion in the bankfull channel is due to the construction of the main and secondary dykes and river training works, which are largely in a wide and narrow alternated pattern along the LYR such that the water flowing over wider floodplains returns to the channel downstream after it drops sediment. For small overbank floods, the bankfull channel is subject to erosion when the sediment transport coefficient is less than 0.028, whereas the amount of sediment deposited on the secondary floodplain is associated closely with the sediment concentration of flow. Over the entire length of the LYR, the situation of erosion in the bankfull channel and sediment deposition on the main and secondary floodplains occurred mainly in the upper reach of the LYR, in which a channel wandering in planform has been well developed.  相似文献   
939.
Abstract

In this study, a 5‐day life‐cycle of the IOP‐14 storm during CASP II is examined using conventional observations and numerical simulations with a mesoscale version of the Canadian Regional Finite‐Element (RFE) model. Observational analysis reveals that the IOP‐14 storm forms from a lee trough, occurring along a strong baroclinic zone with an intense frontogenetic deformation, that interacts with an upper‐level travelling short‐wave trough across the Canadian Rockies. Then the storm experiences a slow, but nearly steady, growth while traversing the North American continent. It deepens explosively as it moves into the Atlantic Ocean. It appears that i) the enhanced large‐scale baroclinicity due to land‐sea temperature contrasts, ii) the tremendous latent heat release due to the transport of high‐θe air from the marine boundary layer, Hi) the decrease of surface drag and iv) the favourable westward tilt of the low with an amplifying trough all contribute to the explosive deepening of the storm.

Two consecutive simulations covering a total of 102 h during the storm development are carried out with a grid size of 50 km. The RFE model reproduces very well the formation of the surface low on the lee side of the Rockies, the track and deepening rates, the explosive development and decay of the storm, and various mesoscale phenomena (e.g., a “bent‐back” warm front, a “T‐bone” thermal pattern, a cold frontal “fracture”, an upper‐level “eye” and warm‐core structures), as verified by conventional observations, satellite imagery, flight‐level and dropsonde data from a research aircraft. It is found from potential vorticity (PV) analysis that the storm reaches its peak intensity as the upper‐level dry PV anomaly, the low‐level moist PV anomaly and surface thermal warmth are vertically superposed. PV inversions reveal that these anomalies contribute about 60%, 30% and 10%, respectively, to the 900‐hPa negative height perturbation. It is shown that the warm‐core structure near the cyclone centre is produced by advection of warmer air ahead of the cold front, rather than by adiabatic warming associated with subsidence.  相似文献   
940.
Studies employing integrated surface–subsurface hydrological models (ISSHMs) have utilized a variety of test cases to demonstrate model accuracy and consistency between codes. Here, we review the current state of ISSHM testing and evaluate the most popular ISSHM test cases by comparing the hydrodynamic processes simulated in each case to the processes found in well‐characterized, real‐world catchments and by comparing their general attributes to those of successful benchmark problems from other fields of hydrogeology. The review reveals that (1) ISSHM testing and intercode comparison have not adopted specific test cases consistently; (2) despite the wide range of ISSHM metrics available for model testing, only two model performance diagnostics are typically adopted: the catchment outflow hydrograph and the catchment water balance; (3) in intercode comparisons, model performance is usually judged by evaluating only one performance diagnostic: the catchment outflow hydrograph; and (4) ISSHM test cases evaluate a small number of hydrodynamic processes that are largely uniform across the model domain, representing a limited selection of the processes of interest in well‐characterized, real‐world catchments. ISSHM testing would benefit from more intercode comparisons using a consistent set of test cases, aimed at evaluating more catchment processes (e.g. flooding) and using a wider range of simulation diagnostics (e.g. pressure head distributions). To achieve this, a suite of test case variations is required to capture the relevant catchment processes. Finally, there is a need for additional ISSHM test problems that compare model predictions with hydrological observations from intensively monitored field sites and controlled laboratory experiments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号