首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   21篇
  国内免费   86篇
测绘学   10篇
大气科学   3篇
地球物理   58篇
地质学   187篇
海洋学   40篇
天文学   2篇
综合类   9篇
自然地理   15篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   8篇
  2019年   10篇
  2018年   10篇
  2017年   5篇
  2016年   11篇
  2015年   5篇
  2014年   13篇
  2013年   16篇
  2012年   17篇
  2011年   11篇
  2010年   16篇
  2009年   20篇
  2008年   20篇
  2007年   9篇
  2006年   19篇
  2005年   11篇
  2004年   19篇
  2003年   10篇
  2002年   12篇
  2001年   8篇
  2000年   10篇
  1999年   13篇
  1998年   6篇
  1997年   7篇
  1996年   8篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1979年   1篇
排序方式: 共有324条查询结果,搜索用时 15 毫秒
141.
A model for the downward transfer of wind momentum is derived for growing waves. It is shown that waves, which grow due to an uneven pressure distribution on the water surface or a wave-coherent surface shear stress have horizontal velocities out of phase with the surface elevation. Further, if the waves grow in the x-direction, while the motion is perhaps time-periodic at any fixed point, the Reynolds stresses associated with the organized motion are positive. This is in agreement with several field and laboratory measurements which were previously unexplained, and the new theory successfully links measured wave growth rates and measured sub-surface Reynolds stresses. Wave coherent air pressure (and/or surface shear stress) is shown to change the speed of wave propagation as well as inducing growth or decay. From air pressure variations that are in phase with the surface elevation, the influence on the waves is simply a phase speed increase. For pressure variations out of phase with surface elevation, both growth (or decay) and phase speed changes occur. The theory is initially developed for long waves, after which the velocity potential and dispersion relation for linear waves in arbitrary depth are given. The model enables a sounder model for the transfer to storm surges or currents of momentum from breaking waves in that it does not rely entirely on ad-hoc turbulent diffusion. Future models of atmosphere-ocean exchanges should also acknowledge that momentum is transferred partly by the organized wave motion, while other species, like heat and gasses, may rely totally on turbulent diffusion. The fact that growing wind waves do in fact not generally obey the dispersion relation for free waves may need to be considered in future wind wave development models.  相似文献   
142.
通过实例 ,介绍了一种路基压实密度原位测试新技术———附加质量法 ,并对其原理、方法技术、使用仪器设备及试验结果进行了详细叙述 ,最后认为该方法技术值得大力推广应用。  相似文献   
143.
不同类型地震断层上的固体潮汐库仑破裂应力特征   总被引:6,自引:1,他引:5       下载免费PDF全文
计算和研究了不同类型地震断层上的潮汐库仑破裂应力及其随纬度变化特征;通过对全球20395个地震断层发震时潮汐库仑破裂应力的计算,研究了受到潮汐库仑破裂应力促滑作用的不同类型地震断层的纬度分布特征.结果表明,断层上潮汐库仑破裂应力的性质和特征与断层的类型、走向和位置密切相关,同一时间段内不同类型地震断层上的潮汐库仑破裂应...  相似文献   
144.
高压—超高压变质岩的成岩深度: 争论及评述   总被引:1,自引:1,他引:0       下载免费PDF全文
武红岭 《地质论评》2011,57(4):555-564
有关高压、超高压岩石的成岩深度的争论由来已久,本文对此进行了较全面、详实的回顾、介绍和评述;结合自己的研究心得,作者提出了几点认识和建议,供争论的双方参考或做进一步的争辩: ① 因为有构造压力的存在,超高压变质岩壳内成因观点更合理;② 成岩深度的测算方法需要在理论和实际应用中改进和完善;③ 不应完全否定基于静岩压力的大陆深俯冲机制;④ 建议争论双方相互吸收对方观点中的合理成分,联手开展相关研究。  相似文献   
145.
Arid regions worldwide are plagued by collapsible soils. Collapsible soil is characterised by the sudden decrease in volume that occurs when it is subjected to inundation under constant stress. This volume change manifest itself as drastic and unpredicted foundation settlement, which may lead to further catastrophic failure of the supported structures. Collapse settlement is the term applied to the additional settlement of a foundation due to wetting of the underlying soils. The results of an experimental investigation of the effects of the saturation of soil with water, kerosene, and crude oil, and of the effects of the fluid head on the magnitude, degree, and rate of collapse of the underlying soil are presented in this paper. Soil erodibility is presented in terms of the applied hydraulic shear stress and the rate of erosion. The relationship between soil erosion and the magnitude and rate of collapse is examined. Empirical methods for the prediction of the magnitude and rate of collapse of a soil saturated with the test fluids and subjected to a hydraulic constant head are proposed.  相似文献   
146.
Wellbore instability, particularly in shale formations, is regarded as a major challenge in drilling operations. Many factors, such as rock properties, in-situ stresses, chemical interactions between shale and drilling fluids, and thermal effects, should be considered in well trajectory designs and drilling fluid formulations in order to mitigate wellbore instability-related problems. A comprehensive study of wellbore stability in shale formations that takes into account the three-dimensional earth stresses around the wellbore as well as chemical and thermal effects is presented in this work. The effects of borehole configuration (e.g. inclination and azimuth), rock properties (e.g. strength, Young's modulus, membrane efficiency and permeability), temperature and drilling fluid properties (e.g. mud density and chemical concentrations) on wellbore stability in shale formations have been investigated. Results from this study indicate that for low-permeability shales, chemical interactions between the shale and water-based fluids play an important role. Not only is the activity of the water important but the diffusion of ions is also a significant factor for saline fluids. The cooling of drilling fluids is found to be beneficial in preventing compressive failure. However, decreasing the mud temperature can be detrimental since it reduces the fracturing pressure of the formation, which can result in lost-circulation problems. The magnitude of thermal effects depends on shale properties, earth stresses and wellbore orientation and deviation. Conditions are identified when chemical and thermal effects play a significant role in determining the mud-weight window when designing drilling programmes for horizontal and deviated wells. The results presented in this paper will help in reducing the risks associated with wellbore instability and thereby lowering the overall non-productive times and drilling costs.  相似文献   
147.
On the basis of the measurement data pertaining to waves, current, and sediment in February 2012 in the mouth bar of the Modaomen Estuary, the Soulsby formulae with an iterative method are applied to calculating bottom shear stresses (BSS) and their effect on a sediment resuspension. Swell induced BSS have been found to be the most important part of the BSS. In this study, the correlation coefficient between a wavecurrent shear stress and SSC is 0.86, and that between current shear stresses and SSC is only 0.40. The peaks of the SSC are consistent with the height and the BSS of the swell. The swell is the main mechanism for the sediment re-suspension, and the tidal current effect on sediment re-suspension is small. The peaks of the SSC are centered on the high tidal level, and the flood tide enhances the wave shear stresses and the SSC near the bottom. The critical shear stress for sediment re-suspension at the observation station is between 0.20 and 0.30 N/m2. Tidal currents are too weak to stir up the bottom sediment into the flow, but a WCI (wave-current interaction) is strong enough to re-suspend the coarse sediment.  相似文献   
148.
Abstract

Basic hidden Markov models are very useful in stochastic environmental research but their ability to accommodate sufficient dependence between observations is somewhat limited. However, they can be modified in several ways to form a rich class of flexible models that are useful in many environmental applications. We consider a class of hidden Markov models that incorporate additional dependence among observations to model average regional rainfall time series. The focus of the study is on models that introduce additional dependence between the state level and the observation level of the process and also on models that incorporate dependence at observation level. Construction of the likelihood function of the models is described along with the usual second-order properties of the process. The maximum likelihood method is used to estimate the parameters of the models. Application of the proposed class of models is illustrated in an analysis of daily regional average rainfall time series from southeast and southwest England for the winter season during 1931 to 2010. Models incorporating additional dependence between the state level and the observation level of the process captured the distributional properties of the daily rainfall well, while the models that incorporate dependence at the observation level showed their ability to reproduce the autocorrelation structure. Changes in some of the regional rainfall properties during the time period are also studied.

Editor D. Koutsoyiannis  相似文献   
149.
本文基于带集中参数边界条件的分布参数连续梁理论,推导规则隔震梁桥单墩-质点(SCM)地震时程响应的计算步骤.在控制方程边界条件引入等效基础弹簧和墩顶隔震层变形协调条件,解析地获得各阶实模态,用牛顿法搜索各阶频率.为了处理隔震层非比例阻尼产生的耦联效应,由能量法分配各阶实振型的隔震层附加阻尼比,实现体系的实模态近似解耦,应用振型叠加法求解体系的地震时程响应.最后应用该方法对一规则隔震梁桥SCM体系的地震响应进行分析,与有限元时程积分的结果进行比较,表明此方法的有效性.计算结果表明,采用墩顶隔震策略的单墩-质点体系能显著减小结构响应,具有良好的减震效果.  相似文献   
150.
This paper presents analytical elastic-plastic solutions for static stress loading analysis and quasi-static expansion analysis of a cylindrical cavity in Tresca materials, considering biaxial far-field stresses and shear stresses along the inner cavity wall. The two-dimensional static stress solution is obtained by assuming that the plastic zone is statically determinate and using the complex variable theory in the elastic analysis. A rigorous conformal mapping function is constructed, which predicts that the elastic-plastic boundary is in an elliptic shape under biaxial in situ stresses, and the range of the plastic zone extends with increasing internal shear stresses. The major axis of the elliptical elastic-plastic boundary coincides with the direction of the maximum far-field compression stress. Furthermore, considering the internal shear stresses, an analytical large-strain displacement solution is derived for continuous cavity expansion analysis in a hydrostatic initial stress filed. Based on the derived analytical stress and displacement solutions, the influence of the internal shear stresses on the quasi-static cavity expansion process is studied. It is shown that additional shear stresses could reduce the required normal expansion pressure to a certain degree, which partly explains the great reduction of the axial soil resistance due to rotations in rotating cone penetration tests. In addition, through additionally considering the potential influences of biaxial in situ stresses and shear stresses generated around the borehole during drillings, an improved cavity expansion approach for estimating the maximum allowable mud pressure of horizontal directional drillings (HDDs) in undrained clays is proposed and validated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号