首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3674篇
  免费   424篇
  国内免费   381篇
测绘学   84篇
大气科学   70篇
地球物理   1254篇
地质学   1097篇
海洋学   139篇
天文学   1564篇
综合类   122篇
自然地理   149篇
  2024年   5篇
  2023年   8篇
  2022年   59篇
  2021年   69篇
  2020年   84篇
  2019年   84篇
  2018年   66篇
  2017年   83篇
  2016年   81篇
  2015年   79篇
  2014年   106篇
  2013年   111篇
  2012年   100篇
  2011年   100篇
  2010年   79篇
  2009年   268篇
  2008年   307篇
  2007年   292篇
  2006年   312篇
  2005年   273篇
  2004年   285篇
  2003年   275篇
  2002年   202篇
  2001年   192篇
  2000年   224篇
  1999年   197篇
  1998年   176篇
  1997年   77篇
  1996年   75篇
  1995年   38篇
  1994年   30篇
  1993年   39篇
  1992年   23篇
  1991年   17篇
  1990年   17篇
  1989年   20篇
  1988年   7篇
  1987年   7篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1979年   6篇
  1954年   1篇
排序方式: 共有4479条查询结果,搜索用时 31 毫秒
111.
徐辉龙 《华南地震》2003,23(4):24-36
1995年日本新泻北部M6.0地震发生在新泻地震空区的东部边缘.由于此次地震震源较浅(10 km),造成了55栋房屋倒塌、165栋房屋半倒.通过计算倾倒墓碑的地震矩,对本区地震烈度进行了分析,发现烈度6度区(据日本JMA度)为一覆盖面积6.1×1 km2,呈NNE-SSW向分布的条带,表明震中区的冲积平原下存在一条隐伏断层.震中区地下水的温度、电导率和Cl-浓度等异常区与呈线性分布的6度烈度区大致吻合,也有力地证明了震中区下面存在一条隐伏断层.这次地震可能是由高压型热水系沿隐伏活动断层喷溢引起.带着高温的高压热水降低了岩石的断裂强度,从而触发了地震.  相似文献   
112.
可可西里——东昆仑活动构造带强震活动研究   总被引:13,自引:0,他引:13  
青海昆仑山口西 8.1级地震发生在具有新生性特征的可可西里—东昆仑活动断裂带上。该断裂带在 190 0年以来的 10 0多年中经历了一个强震活动过程。在该强震活动过程中 ,地震沿整个可可西里—东昆仑活动构造带分段破裂 ,强震的破裂长度和震级之间大致满足对数线性的统计关系 ,强震活动呈现指数型时间分布的加速特征。这种强震加速活动特征可以用含多个震源体的孕震系统的强震成组活动模型给予解释。  相似文献   
113.
中国大陆及其邻区强震活动与活动地块关系研究   总被引:16,自引:0,他引:16  
从活动地块假说出发 ,在活动地块研究的基础上 ,探讨了中国大陆及邻区活动地块与强震活动的关系。研究指出 ,主要构造变形和强烈地震大都发生在活动地块边界。在占总面积 17%的活动地块边界上 ,集中了全部的 8级以上巨大地震和 86 %的 7级以上大地震 ,其释放能量占全部总能量的 95 %以上 ,表明中国大陆及其邻区活动地块边界带控制了绝大部分的强地震。从活动地块的整体来看 ,强震活动不仅显示出显著的韵律性特征 ,而且其高、低起伏基本上与中国大陆地区一致 ,只是强震活跃时段有时稍长于中国大陆。各轮回强震活动都有各自活动的主体地区 ,反映了不同活跃期内地块的不同活动方式。文中还从现今地壳运动角度 ,讨论了活动地块运动速率与强地震活动水平之间的可能联系。  相似文献   
114.
柯坪塔格推覆构造几何学、运动学及其构造演化   总被引:29,自引:1,他引:29  
大量野外构造地质调查和深部构造解释表明柯坪塔格推覆构造由多组倒转复式背斜、复式箱状背斜构成的推覆体及其前缘逆冲断裂组成 ,由寒武系—第四系组成的推覆体由北向南逆—斜冲 ,平面上构成向南凸出的弧形推覆构造 ;普昌断裂由各不相连的逆冲斜冲断裂段组成 ,而不是完整的一条走滑断层 ,各推覆体前缘逆冲断裂与各推覆体的普昌断裂段共同构成统一的前缘逆冲斜冲逆冲断裂和推覆构造系统 ;普昌断裂段以西的推覆体具有向东抬升、向西倾覆的鼻状构造特征 ,普昌断裂段以东的推覆体具有向西抬升、向东倾覆的鼻状构造特征 ,普昌基底隆起带是巴楚隆起隐伏在柯坪塔格推覆构造之下的部分。各推覆体前缘断裂在深部均归并于统一的寒武系底部的滑脱面 ,其南浅北深 ,东浅西深 (普昌隆起带以西 )或西浅东深 (普昌隆起带以东 ) (6 10km ) ,埋深较大区发育多组滑脱面。柯坪塔格推覆构造的形成时期为晚第四纪 ,为现今活动的推覆构造系统。文中认为各推覆体向南西的倾覆端基底滑脱面和中新生界内部的滑脱面没有贯通 ,是未来 6级以上地震的发震构造部位。  相似文献   
115.
Mount Nemrut, an active stratovolcano in eastern Turkey, is a great danger for its vicinity. The volcano possesses a summit caldera which cuts the volcano into two stages, i.e. pre- and post-caldera. Wisps of smoke and hot springs are to be found within the caldera. Although the last recorded volcanic activity is known to have been in 1441, we consider here that the last eruption of Nemrut occurred more recently, probably just before 1597. The present active tectonic regime, historical eruptions, occurrence of mantle-derived magmatic gases and the fumarole and hot spring activities on the caldera floor make Nemrut Volcano a real danger for its vicinity. According to the volcanological past of Nemrut, the styles of expected eruptions are well-focused on two types: (1) occurrence of water within the caldera leads to phreatomagmatic (highly energetic) eruptions, subsequently followed by lava extrusions, and (2) effusions–extrusions (non-explosive or weakly energetic eruptions) on the flanks from fissures. To predict the impact area of future eruptions, a series of morphological analyses based on field observations, Digital Elevation Model and satellite images were realized. Twenty-two valleys (main transport pathways) were classified according to their importance, and the physical parameters related to the valleys were determined. The slope values in each point of the flanks and the Heim parameters H/L were calculated. In the light of morphological analysis the possible impact areas around the volcano and danger zones were proposed. The possible transport pathways of the products of expected volcanic events are unified in three main directions: Bitlis, Guroymak, Tatvan and Ahlat cities, the about 135 000 inhabitants of which could be threatened by future eruptions of this poorly known and unsurveyed volcano.  相似文献   
116.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
117.
A predictive instantaneous optimal control (PIOC) algorithm is proposed for controlling the seismic responses of elastic structures. This algorithm compensates for the time delay that happens in practical control applications by predicting the structural response over a period that equals the time delay, and by substituting the predicted response in the instantaneous optimal control (IOC) algorithm. The unique feature of this proposed PIOC algorithm is that it is simple and at the same time compensates for the time delay very effectively. Numerical examples of single degree of freedom structures are presented to compare the performance of PIOC and IOC systems for various time delay magnitudes. Results show that a time delay always causes degradation of control efficiency, but PIOC can greatly reduce this degradation compared to IOC. The effects of the structure's natural periods and the choice of control gains on the degradation induced by the time delay are also analyzed. Results show that shorter natural periods and larger control gains are both more sensitive and more serious to the degradation of control efficiency. Finally, a practical application of PIOC is performed on a six‐story moment‐resisting steel frame. It is demonstrated that PIOC contributes significantly to maintain stability in multiple degree of freedom structures, and at the same time PIOC has a satisfactory control performance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
118.
A new inelastic structural control algorithm is proposed by incorporating the force analogy method (FAM) with the predictive instantaneous optimal control (PIOC) algorithm. While PIOC is very effective in compensating for the time delay for elastic structures, the FAM is highly efficient in performing the inelastic analysis. Unlike conventional inelastic analysis methods of changing stiffness, the FAM analyzes structures by varying the structural displacement field, and therefore the state transition matrix needs to be computed only once. This greatly simplifies the computation and makes inelastic analysis readily applicable to the PIOC algorithm. The proposed algorithm compensates for the time delay that happens in practical control systems by predicting the inelastic structural response over a period that equals the magnitude of the time delay. A one‐story frame with both strain‐hardening and strain‐softening inelastic characteristics is analyzed using this algorithm. Results show that the proposed control algorithm is feasibile for any inelastic structures. While the control efficiency deteriorates with the increase in magnitude of the time delay, the PIOC maintains acceptable performance within a wide range of time delay magnitudes. Finally, a computer model of a six‐story moment‐resisting steel frame is analyzed to show that PIOC has good control results for real inelastic structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
119.
The Milos volcanic field includes a well-exposed volcaniclastic succession which records a long history of submarine explosive volcanism. The Bombarda volcano, a rhyolitic monogenetic center, erupted ∼1.7 Ma at a depth <200 m below sea level. The aphyric products are represented by a volcaniclastic apron (up to 50 m thick) and a lava dome. The apron is composed of pale gray juvenile fragments and accessory lithic clasts ranging from ash to blocks. The juvenile clasts are highly vesicular to non-vesicular; the vesicles are dominantly tube vesicles. The volcaniclastic apron is made up of three fades: massive to normally graded pumice-lithic breccia, stratified pumice-lithic breccia, and laminated ash with pumice blocks. We interpret the apron beds to be the result of water-supported, volcaniclastic mass-How emplacement, derived directly from the collapse of a small-volume, subaqueous eruption column and from syn-eruptive, down-slope resedimentation of volcaniclastic debris. During this eruptive phase, the activity could have involved a complex combination of phreatomagmatic explosions and minor submarine effusion. The lava dome, emplaced later in the source area, is made up of flow-banded lava and separated from the apron by an obsidian carapace a few meters thick. The near-vertical orientation of the carapace suggests that the dome was intruded within the apron. Remobilization of pyroclastic debris could have been triggered by seismic activity and the lava dome emplacement. Published online: 30 January 2003 Editorial responsibility: J. McPhie  相似文献   
120.
Movement and strain conditions of active blocks in the Chinese mainland   总被引:2,自引:0,他引:2  
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90oE is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activity and it shortens in the NS direction at the rate of 15.2±1.5 mm/a. Tianshan block ranks the second and it shortens in the NS direction at the rate of 10.1±0.9 mm/a. At present, the two blocks are still uprising. It can be seen from superficial strain that the Chinese mainland is predominated by superficial expansion. Almost the total area in the eastern part of the Chinese mainland is expanded, while in the western part, the superficial compression and expansion are alternatively distributed from the south to the north. In the Chinese mainland, most EW-trending or proximate EW-trending faults have the left-lateral or left-lateral strike-slip relative movements along both sides, and most NS-trending faults have the right-lateral or right-lateral strike-slip relative movements along both sides. According to the data from GPS measurements the left-lateral strike-slip rate is 4.8±1.3 mm/a in the central part of Altun fault and 9.8±2.2 mm/a on Xianshuihe fault. The movement of the fault along the block boundary has provided the condition for block movement, so the movements of the block and its boundary are consistent, but the movement levels of the blocks are different. The statistic results indicate that the relative movement between most blocks is quite significant, which proves that active blocks exist. Himalayas, Tianshan, Qiangtang and SW Yunnan blocks have the most intensive movement; China-Mongolia, China-Korea (China-Korea), Alxa and South China blocks are rather stable. The mutual action of India, Pacific and Philippine Sea plates versus Eurasia plate is the principal driving force to the block movement in the Chinese mainland. Under the NNE-trending intensive press from India plate, the crustal matter of Qingzang plateau moves to the NNE and NE directions, then is hindered by the blocks located in the northern, northeastern and eastern parts. The crustal matter moves towards the Indian Ocean by the southeastern part of the plateau.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号