The hydrologic response of engineered media plays an important role in determining a stormwater control measure's ability to reduce runoff volume, flow rate, timing, and pollutant loads. Five engineered media, typical of living roof and bioretention stormwater control measures, were investigated in laboratory column experiments for their hydrologic responses to steady, large inflow rates. The inflow, medium water content response, and outflow were all measured. The water flow mechanism (uniform flow vs. preferential flow) was investigated by analyzing medium water content response in terms of timing, magnitude, and sequence with depth. Modeling the hydrologic process was conducted in the HYDRUS‐1D software, applying the Richards equation for uniform flow modeling, and a mobile–immobile model for preferential flow modeling. Uniform flow existed in most cases, including all initially dry living roof media with bimodal pore size distributions and one bioretention medium with unimodal pore size distribution. The Richards equation can predict the outflow hydrograph reasonably well for uniform flow conditions when medium hydraulic properties are adequately represented by appropriate functions. Preferential flow was found in two media with bimodal pore size distributions. The occurrence of preferential flow is more likely due to the interaction between the bimodal pore structure and the initial water content rather than the large inflow rate. 相似文献
A fluorescent sand-tracer experiment was performed at Comporta Beach (Portugal) with the aim of acquiring longshore sediment transport data on a reflective beach, the optimization of field and laboratory tracer procedures and the improvement of the conceptual model used to support tracer data interpretation.
The field experiment was performed on a mesotidal reflective beach face in low energetic conditions (significant wave height between 0.4 and 0.5 m). Two different colour tracers (orange and blue) were injected at low tide and sampled in the two subsequent low tides using a high resolution 3D grid extending 450 m alongshore and 30 m cross-shore. Marked sand was detected using an automatic digital image processing system developed in the scope of the present experiment.
Results for the two colour tracers show a remarkable coherence, with high recovery rates attesting data validity. Sand tracer displayed a high advection velocity, but with distinct vertical distribution patterns in the two tides: in the first tide there was a clear decrease in tracer advection velocity with depth while in the second tide, the tracer exhibited an almost uniform vertical velocity distribution. This differing behaviour suggests that, in the first tide, the tracer had not reached equilibrium within the transport system, pointing to a considerable time lag between injection and complete mixing. This issue has important implications for the interpretation of tracer data, indicating that short term tracer experiments tend to overestimate transport rates. In this work, therefore, longshore estimates were based on tracer results obtained during the second tide.
The estimated total longshore transport rate at Comporta Beach was 2 × 10− 3 m3/s, more than four times larger than predicted using standard empirical longshore formulas. This discrepancy, which results from the unusually large active moving layer observed during the experiment, confirms the idea that most common longshore transport equations under-estimate total sediment transport in plunging/surging waves. 相似文献
We examine the ROSAT PSPC X-ray properties of a sample of 15 Abell clusters containing 23 narrow-angle tailed (NAT) radio galaxies. We find that clusters with NATs show a significantly higher level of substructure than a similar sample of radio-quiet clusters, indicating that NAT radio sources are preferentially located in dynamically complex systems. Also, the velocity distribution of the NAT galaxies is similar to that of other cluster members; these velocities are inadequate for producing the ram pressure necessary to bend the radio jets. We therefore propose a new model for NAT formation, in which NATs are associated with dynamically complex clusters undergoing merger events. The U -shaped NAT morphology is produced in part by the merger-induced bulk motion of the ICM bending the jets. 相似文献