首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   43篇
  国内免费   79篇
测绘学   1篇
大气科学   7篇
地球物理   85篇
地质学   288篇
海洋学   27篇
天文学   8篇
综合类   1篇
自然地理   17篇
  2024年   1篇
  2022年   20篇
  2021年   17篇
  2020年   8篇
  2019年   14篇
  2018年   14篇
  2017年   12篇
  2016年   13篇
  2015年   13篇
  2014年   7篇
  2013年   17篇
  2012年   8篇
  2011年   13篇
  2010年   13篇
  2009年   22篇
  2008年   18篇
  2007年   24篇
  2006年   19篇
  2005年   15篇
  2004年   17篇
  2003年   10篇
  2002年   9篇
  2001年   8篇
  2000年   13篇
  1999年   15篇
  1998年   10篇
  1997年   14篇
  1996年   12篇
  1995年   11篇
  1994年   13篇
  1993年   9篇
  1992年   12篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1983年   2篇
  1981年   1篇
排序方式: 共有434条查询结果,搜索用时 15 毫秒
91.
Within the Tethyan realm, data for the subduction history of the Permo–Triassic Tethys in the form of accretionary complexes are scarce, coming mainly from northwest Turkey and Tibet. Herein we present field geological, petrological and geochronological data on a Triassic accretionary complex, the A?vanis metamorphic rocks, from northeast Turkey. The A?vanis metamorphic rocks form a SSE–NNW trending lozenge‐shaped horst, ~20 km long and ~6 km across, bounded by the strands of the active North Anatolian Fault close to the collision zone between the Eastern Pontides and the Menderes–Taurus Block. The rocks consist mainly of greenschist‐ to epidote‐amphibolite‐facies metabasite, phyllite, marble and minor metachert and serpentinite, interpreted as a metamorphic accretionary complex based on the oceanic rock types and ocean island basaltic, mid‐ocean ridge basaltic and island‐arc tholeiitic affinities of the metabasites. This rock assemblage was intruded by stocks and dikes of Early Eocene quartz diorite, leucogranodiorite and dacite porphyry. Metamorphic conditions are estimated to be 470–540°C and ~0.60–0.90 GPa. Stepwise 40Ar/39Ar dating of phengite–muscovite separates sampled outside the contact metamorphic aureoles yielded steadily increasing age spectra with the highest incremental stage corresponding to age values ranging from ~180 to 209 Ma, suggesting that the metamorphism occurred at ≥ 209 Ma. Thus, the A?vanis metamorphic rocks represent the vestiges of the Late Triassic or slightly older subduction in northeast Turkey. Estimated P–T conditions indicate higher temperatures than those predicted by steady state thermal models for average subduction zones, and can best be accounted for by a hot subduction zone, similar to the present‐day Cascadia. Contact metamorphic mineral assemblages around an Early Eocene quartz diorite stock, on the other hand, suggest that the present‐day erosion level was at depths of ~14 km during the Early Eocene, indicative of reburial of the metamorphic rocks. Partial disturbance of white‐mica Ar–Ar age spectra was probably caused by the reburial coupled with heat input by igneous activity, which is probably related to thrusting due to the continental collision between Eastern Pontides and the Menderes–Taurus Block.  相似文献   
92.
苏鲁造山带浅变质岩的成因及其大地构造意义   总被引:2,自引:0,他引:2  
苏鲁造山带超高压变质带内部及其北缘,出露仅经过绿片岩相变质作用的浅变质岩系。通过对该浅变质岩的区域分布、地质特征及地球化学的综合研究,表明这些浅变质岩系与大别-苏鲁造山带大陆板块俯冲存在密切的成因关系,为扬子板块俯冲过程中被刮削下来的构造残片,构成大陆板块俯冲过程中形成的构造加积杂岩。在此基础上,厘定了苏鲁造山带的构造成因模型,并对苏鲁造山带的东延问题进行了讨论。  相似文献   
93.
黑龙江杂岩的碎屑锆石年代学及其大地构造意义   总被引:18,自引:9,他引:9  
黑龙江杂岩带位于佳木斯地体西缘,为佳木斯地体向西与松嫩地体之间俯冲、拼贴、碰撞而形成的高压变质带.黑龙江杂岩沿牡丹江断裂分布,其构造-岩石组合、变质变形特征等显示其为佳木斯地体向松嫩地体俯冲拼帖的过程中形成的增生杂岩,目前保存下来的杂岩带应为大规模增生楔仰冲到佳木斯地体之上的残余部分.88颗碎屑锆石的全部样品SHRIMPU-Ph年代学测试结果显示三个主要年龄区间:170~220Ma,峰值年龄为183Ma;240~338Ma,峰值年龄为256Ma;450~520Ma,峰值年龄为470Ma.而28个碎屑锆石谐和年龄的年龄谱为两组:240~338Ma,峰值年龄为256Ma;450~500Ma,峰值年龄为470Ma.碎屑锆石年龄数据分析得到,240~338Ma峰期年龄为256Ma的年龄应代表黑龙江杂岩主体岩石的沉积年龄上限;而450~500Ma的年龄谱对应于佳木斯地体的基底变质岩年龄,显示佳木斯地体的基底变质岩曾为黑龙江杂岩的物源区;而170~210Ma,峰期年龄为183Ma的不谐和年龄应为受印支期-早侏罗世构造热事件的扰动年龄,与该区变质单矿物的Ar-Ar年龄相一致,应代表了该区陆-陆碰撞的时代.上述年龄为黑龙江杂岩的形成与演化提供了重要的地质年代学制约,即黑龙江杂岩的原岩成岩时代上限为早三叠世,佳木斯地体向西的俯冲时代主体为印支期,而陆-陆拼贴及碰撞过程主要为晚印支期并可能持续到早侏罗世.这些结果将为揭示我国东北地区构造演化的年代学格架以及三叠纪古亚洲构造域向环太平洋构造域叠加和转换的动力学背景研究提供新的基本地质事实依据.  相似文献   
94.
南天山区域大地构造与演化   总被引:27,自引:0,他引:27  
塔里木和中天山之间的南天山造山带,经历了复杂的构造演化与地壳增生过程。综合分析南天山造山带的构造、地层、古生物、岩石、地球化学和同位素年代学等方面的资料,特别是放射虫、蛇绿岩、蓝片岩等方面的最新研究成果,讨论了南天山的区域构造格局和演化过程。南天山主体为一上百公里宽的增生-碰撞混杂带-南天山(蛇绿)混杂带;其北侧为中天山岛弧,是仰冲壳楔;南侧为塔里木陆块,是俯冲壳楔。古南天山洋为一广阔的大洋,南天山碰撞造山作用起始于二叠纪末-三叠纪初,新近纪-第四纪进入陆内造山作用阶段。  相似文献   
95.
Nowadays, the Fe-C coprecipitate mechanism is recognized by more and more scholars and becomes the hot topic in the environmental science. On the basis of discussing the interaction between iron oxide and organic matter, and the adsorption research progress of Fe-C complexes on heavy metals, the immobilization potential of Fe-C complexes on heavy metals in polluted soil were illustrated. The surface properties and physical characterizations of iron oxide are changed regularly with the interaction of organic matter, which lead to the higher adsorption capacity of Fe-C complexes in contrast to single iron oxide. Besides, the influences of pH values, organic matter types and surface properties of iron oxides on the adsorption capacity of Fe-C complexes on heavy metals were discussed. The excellent adsorption performance of Fe-C complexes in certain conditions will provide important theoretical basis for contaminated soil remediation.  相似文献   
96.
中国西北部涉及古亚洲和特提斯两大构造域,造山带结构复杂,成矿地质条件优越。为推进地质找矿突破行动计划,中国地质调查局在各成矿(造山)带部署了一批1∶5万、1∶25万区域地质调查与基础地质综合研究项目,取得了一批新发现、新进展,有效提升了对各成矿带成矿地质条件的认知程度,尤其是在阿尔泰南缘、南天山、南昆仑等地识别并确认出规模可观的、成矿作用优越的板块俯冲增生楔,是造山带中的增生造山亚带,是寻找斑岩型铜、构造蚀变岩型金及多金属矿的最有利区带。“增生造山带”的构造、岩浆活动及空间展布等的确认,为地质找矿突破提供了强有力的技术支撑。  相似文献   
97.
西天山的增生造山过程   总被引:63,自引:2,他引:61  
高俊  钱青  龙灵利  张喜  李继磊  苏文 《地质通报》2009,28(12):1804-1816
西天山位于中亚造山带的西南缘,经历了复杂的增生造山过程。它也是标志塔里木地块北部被动陆缘与西伯利亚地块南侧宽阔活动陆缘最后拼合的构造带。根据近年来的研究进展,将西天山划分为北天山弧增生体、伊犁地块北缘活动陆缘、伊犁地块、伊犁地块南缘活动陆缘、中天山复合弧地体、西天山(高压)增生楔和塔里木北部被动大陆边缘。同时综述了西天山蛇绿岩、高压变质岩、花岗岩类的年代学新资料,讨论了其增生造山的过程。西天山增生造山与早古生代帖尔斯克依古洋、早古生代晚期—晚古生代南天山洋和晚古生代北天山洋3个代表洋盆的演化相关,增生造山结束的时间可能是早石炭世末。二叠纪时期,西天山至整个中亚地区进入后碰撞演化阶段。现有资料证实西天山为晚古生代增生造山带,并非三叠纪碰撞造山带。  相似文献   
98.
The Paleo-Tethys formed a large ocean basin that existed between Laurasia and Gondwana during Late Paleozoic to Early Mesozoic times. It opened in the Early Devonian by the rifting of Gondwanaland and closed at around latest Triassic time by the collision of the Cimmerian continent to Laurasia (Metcalfe, 1999). We reconstructed opening and closing process of the Paleo-Tethys in Northern Thailand.  相似文献   
99.
《International Geology Review》2012,54(15):1839-1855
ABSTRACT

The Late Cretaceous accretionary complex of the ?zmir–Ankara–Erzincan suture zone, near Artova, is composed mainly of peridotites (variably serpentinized), amphibolite, garnet-micaschist, calc-schist, marble, basalt, sandstones, neritic limestones. The metamorphic rocks were interpreted as the metamorphic sole rocks occurring at the base of mantle tectonites, because: (i) amphibolites were observed together with the serpentinized peridotites suggesting their occurrences in the oceanic environment; (ii) foliation in amphibolites and serpentinized peridotites run subparallel to each other; (iii) all these metamorphic rocks and serpentinized peridotites are cross-cut by the unmetamorphosed dolerite dikes with island arc tholeiite-like chemistry. Geochemical characteristics of the amphibolites display enriched mid-ocean ridge basalt (E-MORB)- and ocean island basalt (OIB)-like signatures. The dolerite dikes, on the other hand, yield an island arc tholeiite-like composition. Geothermobarometric investigations of the metamorphic sole rocks suggest that the metamorphic temperature was ~650 ± 30°C and the pressure condition was less than 0.5 GPa. Dating of hornblende grains from amphibolite yielded age values ranging from 139 ± 11 to 157 ± 3.6 Ma (2σ). The oldest weighted average age value is regarded as approximating the timing of the intra-oceanic subduction. These cooling ages were interpreted to be the intra-oceanic subduction/thrusting time of the ?zmir–Ankara–Erzincan oceanic domain.  相似文献   
100.
《International Geology Review》2012,54(14):1559-1575
The middle segment of the Yangtze River Deep Fault Belt, located in the foreland of the Dabie orogen, contains widely exposed volcanic–intrusive complexes that formed during two episodes of magmatism (post-collisional and post-orogenic), reflecting crust–mantle interactions during the Late Jurassic (J3) to Early Cretaceous (K1). This article summarizes research on the Mesozoic igneous suites and xenolith suites in the area along the Yangtze River. ‘Post-collisional magmatism’ occurred during lithospheric extension at ~145–130 Ma. Its beginning and end are marked by gabbroic xenoliths and pyroxene cumulates within intrusions at Tongling, and by alkali-rich magmatic rocks. The association includes peraluminous silicic rocks and metaluminous mafic–felsic igneous suites, ranging from medium-K to high-K calc-alkaline to shoshonitic compositions. Taking the Tongling region as an example, quartz monzodiorite yields a sensitive high resolution ion microprobe (SHRIMP) zircon U–Pb age of 139.5 ± 2.9 Ma, and granodiorite yields an age of 135.5 ± 4.4 Ma. These intrusive rocks contain 52.79–66.46 wt.% SiO2, 13.12–17.73 wt.% Al2O3, 1.37–4.62 wt.% MgO, 3.86–6.84 wt.% FeOT, and 4.71–7.87 wt.% total alkalis (Na2O?+?K2O). ACNK values range from 0.62 to 1.20, and ANK values from 1.45 to 3.48. ‘Post-orogenic magmatism’ occurred during lithospheric delamination at ~130–120 Ma. The start of magmatism was marked by the formation of gabbro containing spinel lherzolite xenoliths in the Nanjing–Wuhu Basin (NWB), and its end was marked by the generation of feldspathoid phenocryst-bearing phonolite in the NWB and the Lujiang–Zongyang Basin (LZB), respectively. The association that formed during this episode ranges from alkaline to peralkaline. Taking the Niangniangshan Formation in the NWB as an example, the Nosite phonolite yields a whole-rock monomineral Rb–Sr isochron age of 120 ± 9 Ma, and contains 49.92–60.09 wt.% SiO2, 17.67–20.65 wt.% Al2O3, 0.08–2.45 wt.% MgO, 1.32–6.62 wt.% FeOT, and 9.24–13.92 wt.% total alkalis (Na2O?+?K2O). ACNK values range from 0.72 to 1.24, and ANK values from 1.03 to 1.35.

The two magmatisms correspond to two episodes of crust–mantle interaction. The first involved intensive interaction between middle–lower crust and underplated basaltic magma derived from the upper mantle lithosphere, whereas the second involved minor interaction between the middle–lower crust and basaltic magma derived from the lower lithospheric mantle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号