首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   43篇
  国内免费   87篇
测绘学   1篇
大气科学   7篇
地球物理   85篇
地质学   299篇
海洋学   32篇
天文学   8篇
综合类   1篇
自然地理   17篇
  2024年   1篇
  2023年   2篇
  2022年   20篇
  2021年   18篇
  2020年   9篇
  2019年   15篇
  2018年   14篇
  2017年   14篇
  2016年   15篇
  2015年   15篇
  2014年   7篇
  2013年   19篇
  2012年   8篇
  2011年   15篇
  2010年   13篇
  2009年   23篇
  2008年   18篇
  2007年   24篇
  2006年   19篇
  2005年   15篇
  2004年   17篇
  2003年   10篇
  2002年   9篇
  2001年   8篇
  2000年   13篇
  1999年   15篇
  1998年   10篇
  1997年   14篇
  1996年   12篇
  1995年   11篇
  1994年   13篇
  1993年   9篇
  1992年   12篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1983年   2篇
  1981年   1篇
排序方式: 共有450条查询结果,搜索用时 31 毫秒
331.
Ocean plate stratigraphy (OPS) is essential to understanding accretionary wedges and complexes along convergent plate margins. Mélanges within accretionary wedges and complexes are the products of fragmentation and mixing processes during and following OPS accretion. A new term, ‘OPS mélange’, is proposed here for mélanges composed mostly of blocks of OPS with an argillaceous matrix, and for a mixture of mélanges of multiple origins with either broken or coherent formations. An OPS mélange results from the fragmentation and disruption of OPS, without admixing of other components. Three major types of OPS mélange can be distinguished on the basis of their components: turbidite type, chert–turbidite type, and limestone–basalt type. These three types potentially form similar mélanges, but they are derived from different parts of the OPS, depending on the level of the decollement surface. The concept of ‘OPS mélange’ can be applied to most of the mélanges in accretionary prisms and complexes worldwide. In addition, this proposal recognizes a distinction between processes of fragmentation and mixing of OPS components, and mixing of ophiolite components, the latter of which results in serpentinite mélanges, not OPS mélanges. Mélanges composed of OPS sequences occur worldwide. The recognition of OPS mélanges is a key aspect of understanding tectonic processes at convergent margins, which result in mélange formation in orogenic belts globally.  相似文献   
332.
Accretionary complex histories are broadly understood. Sedimentation in seafloor and trench environments on drifting subducting plates and in associated trenches, followed by (1) deformation and metamorphism in the subduction zone and (2) subsequent uplift at the overriding plate edge, result in complicated stratigraphic and structural sequences in accretionary complexes. Recognizing, defining, and designating individual terranes in subduction complexes clarify some of these complicated relationships within the resulting continent-scale orogenic belts. Terrane designation does not substitute for detailed stratigraphic and structural mapping. Stratigraphic and structural mapping, combined with radiometric and palaeontologic dating, are necessary for delineation of coherent, broken, and dismembered formations, and various mélange units, and for clarification of the details of subduction complex architecture and history. The Franciscan Complex is a representative subduction complex that has evolved through sedimentation, faulting, folding, and low-temperature metamorphism, followed by uplift, associated deformation, and later overprinted deformation. Many belts of Franciscan rocks are offset by strike-slip faults associated with the dextral San Andreas Fault System. In the Franciscan Complex, among the terrane names applied widely, are the ‘Yolla Bolly Terrane’ and the ‘Central Terrane’. Where detailed mapping and detrital zircon ages exist, data reveal that the two names have been applied to rocks of similar general character and age. In the northeastern Diablo Range, Franciscan Complex rocks include coherent units, broken and dismembered formations, and various types of mélanges, all assigned at various times to the Yolla Bolly and other terranes. The details of stratigraphic and structural history revealed by large-scale mapping and radiometric dating prove to be more useful in clarifying the accretionary complex history than assigning a terrane name to the rocks. That history will assist in resolving terrane assignment issues and allow discrimination of subduction-associated and post-subduction events, essential for understanding the overall history of the orogen.  相似文献   
333.
Fugen-dake, the main peak of Unzen Volcano, began a new eruption sequence on November 17, 1990. On May 20, 1991, a new lava dome appeared near the eastern edge of the Fugen-dake summit. Small-scale, 104–106 m3 in volume, Merapi-type block and ash flows were frequently generated from the growing lava dome during May–June, 1991. These pyroclastic flows were accompanied by co-ignimbrite ash plumes that deposited ash-fall deposits downwind of the volcano. Three examples of co-ignimbrite ash-fall deposits from Unzen pyroclastic flows are described. The volume of fall deposits was estimated to be about 30% by volume of the collapsed portions of the dome that formed pyroclastic flows. This proportion is smaller than that described for other larger co-ignimbrite ash-fall deposits from other volcanoes. Grain size distributions of the Unzen co-ignimbrite ash-fall deposits are bi-modal or tri-modal. Most ashes are finer than 4 phi and two modes were observed at around 4–7 phi and 9 phi. They are composed mainly of groundmass fragments. Fractions of another mode at around 2 phi are rich in crystals derived from dome lava. Some of the fine ash component fell as accretionary lapilli from the co-ignimbrite ash cloud indicating either moisture or electrostatic aggregation. We believe that the co-ignimbrite ash of Unzen block and ash flows were formed by the mechanical fracturing of the cooling lava blocks as they collapsed and moved down the slope. These ashes were entrained into the convective plumes generated off the tops of the moving flows.  相似文献   
334.
The hemipelagic mudrocks of the Nankai accretionary prism, Japan, contain hydrothermal deposits associated with a relict spreading center in the Shikoku Basin. Initial work on core samples from Ocean Drilling Program site 808 found several samples with elevated concentrations of calcium, magnesium, iron and manganese, at depths of between 1060 and 1111 m below sea floor. However, the origin of these sediments was uncertain, due to a lack of data. There was no recorded evidence of whether these elevated concentrations were present throughout this interval of core, or if they were present as discrete layers with the background hemipelagic mudrocks in between. In the present study the core was resampled, and the sediments with anomalous chemical compositions were found to be present in discrete layers. This fact, along with a detailed interpretation of their geochemistry, has allowed them to be identified as hydrothermal sediments, associated with the relict spreading center in the Shikoku Basin. The lower (older) two layers display a chemical composition typical of umbers, while the upper (younger) two layers are metalliferous mudrocks typical of deposits found further from the spreading center.  相似文献   
335.
OCEANIC DEPOSITS IN THE YARLUNG—TSANGPO SUTURE ZONE: STRUCTURAL SETTING, RADIOLARIAN AGES AND THEIR TECTONIC IMPLICATIONS  相似文献   
336.
恒春海脊的地质、地球物理特征与其相邻的南海海盆、吕宋火山弧和北吕宋海槽等地质构造单元所反映的特征明显不同 ,主要表现为低密度、弱磁性。推测其地壳性质为陆壳 ,是恒春半岛的南延部分。海脊西侧缓坡为陆缘增生楔 ,可见刺穿现象 ,这些刺穿构造是由逆冲挤压引起的泥底辟。海脊东部受弧陆碰撞的影响而急剧抬升。东部的弧陆碰撞是海脊抬升和增生楔形成的主要原因  相似文献   
337.
It is essential to clarify the lithological, structural, and chronological relationships between the Sanbagawa Metamorphic Complex (MC) and the Cretaceous Shimanto Accretionary Complex (AC) for understanding the tectonic evolution of SW Japan. To this end, we carried out a detailed field survey of the Sanbagawa MC and the Cretaceous Shimanto AC on the central Kii Peninsula, where they are in direct contact with each other. We also conducted U–Pb dating of detrital zircons from these complexes. The field survey showed that the boundary between the Iro Complex of the Sanbagawa MC and the Mugitani Complex of the Shimanto AC, Narai Fault, shows a sinistral sense of shear with a reverse dip‐slip component, and there are significant differences in the strain intensity and the degree of recrystallization between the two complexes across this fault. Detrital zircon U–Pb dating indicates that the Iro Complex in the hanging wall of the Narai Fault shows a significantly younger maximum depositional age than the Mugitani Complex in the footwall of the fault, and an apparently large gap in the MDA of ca. 35 Myr exists across this fault. This large age gap across the Narai Fault suggests that this fault is an essential tectonic boundary fault within the Cretaceous accretionary–metamorphic complexes on the Kii Peninsula, and is considered to be an out‐of‐sequence thrust. In addition, a similar shear direction and a large age gap have been identified across the Ui Thrust, which marks the boundary between the Kouyasan and Hidakagawa belts of the Cretaceous Shimanto AC. The Cretaceous accretionary–metamorphic complexes record the large‐scale tectonic juxtapositions of complexes, and these juxtaposed structures had been caused by sinistral–reverse movements on the tectonic boundary faults such as the Narai Fault and the Ui Thrust.  相似文献   
338.
为揭示马尼拉增生楔的形态结构并加深对其演化过程的理解,本文对横穿马尼拉俯冲带北段的几条典型地震剖面进行了深度偏移处理,得到叠前深度偏移剖面和深度-速度模型,并对马尼拉增生楔的形态结构及内部特征进行了精细解释,将马尼拉增生楔分为原始沉积段、褶皱变形段、逆冲推覆段和背逆冲段四个部分,分别代表增生楔演化的不同阶段。推断马尼拉增生楔下部存在由早期仰冲的菲律宾海板块的残留块体构成的弧前基盘,弧前基盘是控制马尼拉增生楔形成演化的关键构造。弧前基盘前端是拆离滑脱面突然降阶并在地震剖面上"隐没"的部位;弧前基盘向增生楔底部的不断挤入导致了逆冲脱序断层的渐次发育以及增生楔向弧前基盘之上的不断爬升,导致了增生楔上、下陆坡地貌的分化,并为褶皱变形段和逆冲推覆段的地层形变提供了主要的应力。  相似文献   
339.
文章利用三维地震数据揭示了南海白云凹陷东南部两种不同类型的块体搬运沉积体系的内部反射特征、外部形态及运动指示标志, 并且探讨了其成因机制。结果表明, 自晚中新世以来研究区共发育4种地震相: 弱振幅水平状连续地震相、强振幅波状连续地震相、弱振幅半透明杂乱反射地震相和中-强振幅丘状连续反射地震相。通过地震相分析可知, 研究区自晚中新世以来共发育两种不同类型的块体搬运沉积体系: 1) 多期块体搬运沉积复合体, 主要由弱振幅半透明杂乱反射地震相组成, 边界模糊; 2) 单期块体搬运沉积体, 主要由弱振幅半透明杂乱反射地震相和中-强振幅丘状连续反射地震相组成, 边界清晰明显。另外, 研究结果发现高沉积速率和地震活动使得研究区的块体搬运沉积体系表现出内部运动指示特征发育程度低的特征, 而东沙构造活动导致该块体搬运沉积体系具有频发性。  相似文献   
340.
庙垭稀土矿床位于北大巴山东北缘和武当隆起西部边缘接触处的过渡带中,是一个与正长岩碳酸岩杂岩体有关的特大型铌稀土矿床。以酸性火山岩为主体的武当隆起,其时代属性和构造属性也是该区的重要基础问题,与庙垭稀土矿床的形成有着密切的关系。庙垭杂岩体沿着耀岭河群与下志留统梅子垭组之间的断裂构造脆弱带分布,矿区北西向和北西西向断裂和褶皱均较发育,为碳酸岩岩浆从地幔向地壳浅部侵入提供了便利的通道和定位空间,并对铌、稀土矿的分布起一定的控制作用。杂岩体由北向南由边缘相、过渡相及中心相3个相带组成,表现有碳酸岩化、绢云母化、黑云母化、钠长石化、萤石化等围岩蚀变。结合区域地质背景和矿床地质特征,认为在正长岩之后形成的碳酸岩,与正长质岩浆有着密切关系。认为矿化物质来源应为正长岩浆侵入带来,后经岩浆期后气水热液交代作用,即各种碳酸岩化促使铌、稀土元素富集沉淀。杂岩体形成前后受构造作用控制明显,先期形成的岩石冷缩裂缝和构造破碎为后期气热交代创造了良好条件,矿化多侵位于耀岭河群的糜棱岩中。庙垭稀土矿床就是在火山岩喷发时所产生的正长岩碳酸岩与震旦系-古生界岩石地层逆冲推覆过程中相互耦合形成的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号