首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   43篇
  国内免费   87篇
测绘学   1篇
大气科学   7篇
地球物理   85篇
地质学   299篇
海洋学   32篇
天文学   8篇
综合类   1篇
自然地理   17篇
  2024年   1篇
  2023年   2篇
  2022年   20篇
  2021年   18篇
  2020年   9篇
  2019年   15篇
  2018年   14篇
  2017年   14篇
  2016年   15篇
  2015年   15篇
  2014年   7篇
  2013年   19篇
  2012年   8篇
  2011年   15篇
  2010年   13篇
  2009年   23篇
  2008年   18篇
  2007年   24篇
  2006年   19篇
  2005年   15篇
  2004年   17篇
  2003年   10篇
  2002年   9篇
  2001年   8篇
  2000年   13篇
  1999年   15篇
  1998年   10篇
  1997年   14篇
  1996年   12篇
  1995年   11篇
  1994年   13篇
  1993年   9篇
  1992年   12篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1983年   2篇
  1981年   1篇
排序方式: 共有450条查询结果,搜索用时 500 毫秒
311.
青藏高原东部地区中尺度对流复合体的降水特征   总被引:6,自引:2,他引:6  
钟晓平  杨淑群 《高原气象》1994,13(2):113-121
青藏高原东部是中国大陆中尺对流系统活动极为频繁的地区一。采用与Maddox的中尺度对流复合体相类似的定义,对1984-1986年7,8月间活动于该地的一类尺度较大的对流系统的降雨特征进行了分析。该区内30%-50%以上的强降水(≥10mm/h)均由这些系统直接造成。一个系统平均约产生2.73km^3的降水。这类降水有明显的日变化,最大值出现在后半夜4时左右(北京时间,下同),最小值出现在下午18时  相似文献   
312.
张德会 《地质科技情报》1994,13(3):69-74,80
络合物是热液中元素迁移的主要形式,最重要的是氯化物络合物,硫化物络合物,氟化物络合物及羟基化物络合物等。影响络合物稳定性的主要因素为中心离子的性质,酸碱的软硬,相对论效应,配位场稳定能等内在因素及温度,压力等环境因素。元素在热液中的络合物形式及其稳定性是影响太物质沉淀及矿床分带的首要因素。  相似文献   
313.
Ocean plate stratigraphy (OPS) within an ancient accretionary complex provides important information for understanding the history of an oceanic plate from its origin at a mid‐ocean ridge to its subduction at a trench. Here, we report a recently discovered chert–clastic sequence (CCS) that comprises a continuous succession from pelagic sediments to terrigenous clastics and which constitutes part of the OPS in the Akataki Complex within the Cretaceous Shimanto Accretionary Complex on the central Kii Peninsula, SW Japan. As well as describing this sequence, we present U–Pb ages of detrital zircons from terrigenous clastic rocks in the CCS, results for which show that the youngest single grain and youngest cluster ages belong to the Santonian–Campanian and are younger than the radiolarian age from the underlying pelagic sedimentary rock (late Albian–Cenomanian). Thus, the CCS records the movement history of the oceanic plate from pelagic sedimentation (until the late Albian–Cenomanian) to a terrigenous sediment supply (Santonian–Campanian).  相似文献   
314.
Mass-Transport Complexes (MTCs) are important components of deep-water systems, and widely distributed in continental margins and lake basins. Understanding MTCs is helpful for expanding the targets of deep-water hydrocarbon exploration and for evaluating geological risks of subsea engineering. Typical MTCs consist of three parts: the head tension area, body slip area, and toe compression area. During the transportation of MTCs, these three domains come into being successively. MTCs can be classified into three types: slide rock, slump rock, and debris rock, based on the sediment transport process and fluid properties, and they respectively correspond to elastic deformation, elastic and plastic deformation and plastic deformation stages. In 3D seismic plan, according to the direction of sediment flow (the slope direction), some depositional elements of MTCs, such as head cliffs, body folds, and toe squeeze ridges, can be clearly identified in proper order, and in seismic profiles MTCs are characterized by weak-medium amplitude reflections, mound-like shapes, and irregular top/bottom interfaces. In conventional log data, MTCs are commonly responded as abrupt shifts at their top/bottom interfaces. In outcrop data, MTCs have several kinds of sedimentary structures, such as massive textures, sliding folds, and mud lumps. Compared with turbidites, MTCs have many distinct characteristics. For example, MTCs are deposited from sediments transported through a "frozen" manner and have an "elongate-fan-like" slope morphology, a relative large thickness. Furthermore, MTCs can be characterized by no obvious features of grading differentiation and relatively large stratigraphic dips.  相似文献   
315.
Yukio  Isozaki 《Island Arc》1996,5(3):289-320
Abstract The Japanese Islands represent a segment of a 450 million year old subduction-related orogen developed along the western Pacific convergent margin. The geotectonic subdivision of the Japanese Islands is newly revised on the basis of recent progress in the 1980s utilizing microfossil and chronometric mapping methods for ancient accretionary complexes and their high-P/T metamorphic equivalents. This new subdivision is based on accretion tectonics, and it contrasts strikingly with previous schemes based on‘geosyncline’tectonics, continent-continent collision-related tectonics, or terrane tectonics. Most of the geotectonic units in Japan are composed of Late Paleozoic to Cenozoic accretionary complexes and their high-PIT metamorphic equivalents, except for two units representing fragments of Precambrian cratons, which were detached from mainland Asia in the Tertiary. These ancient accretionary complexes are identified using the method of oceanic plate stratigraphy. The Japanese Islands are comprised of 12 geotectonic units, all noted in southwest Japan, five of which have along-arc equivalents in the Ryukyus. Northeast Japan has nine of these 12 geotectonic units, and East Hokkaido has three of these units. Recent field observations have shown that most of the primary geotectonic boundaries are demarcated by low-angle faults, and sometimes modified by secondary vertical normal and/or strike-slip faults. On the basis of these new observations, the tectonic evolution of the Japanese Islands is summarized in the following stages: (i) birth at a rifted Yangtze continental margin at ca 750–700 Ma; (ii) tectonic inversion from passive margin to active margin around 500 Ma; (iii) successive oceanic subduction beginning at 450 Ma and continuing to the present time; and (iv) isolation from mainland Asia by back-arc spreading at ca 20 Ma. In addition, a continent-continent collision occurred between the Yangtze and Sino-Korean cratons at 250 Ma during stage three. Five characteristic features of the 450 Ma subduction-related orogen are newly recognized here: (i) step-wise (not steady-state) growth of ancient accretionary complexes; (ii) subhorizontal piled nappe structure; (iii) tectonically downward-younging polarity; (iv) intermittent exhumation of high-P/T metamorphosed accretionary complex; and (v) microplate-induced modification. These features suggest that the subduction-related orogenic growth in Japan resulted from highly episodic processes. The episodic exhumation of high-P/T units and the formation of associated granitic batholith (i.e. formation of paired metamorphic belts) occurred approximately every 100 million years, and the timing of such orogenic culmination apparently coincides with episodic ridge subduction beneath Asia.  相似文献   
316.
Marine geology of the Medriff Corridor, Mediterranean Ridge   总被引:1,自引:0,他引:1  
Abstract Thirty-one piston and/or gravity cores not exceeding 10 m in length were raised in selected areas of a 300 km-long transect (Medriff Corridor) crossing the Mediterranean Ridge, an accretionary complex subject to continent/continent collision, containing an important evaporitic body (Messinian evaporites), in order to ground-truth the geological make-up. Core location, very accurate with reference to a complex bottom configuration, was preceded by swathe mapping, seismic profiling and side-scan sonar investigations. Most sediment cores have a pelagic facies, with biogenic marls as dominant lithology, and sapropels and tephras as minor, isochronous lithologies. A combination of isochronous lithologies and calcareous plankton biochronology permits high resolution stratigraphic correlations. Pelagic facies sediments are Middle Pleistocene to Holocene in age. Two cores associated with mounds located along thrusts contain a matrix-supported mud breccia of deep provenance, Burdigalian-Langhian in age, similar to that characteristic of the Mediterranean Ridge diapiric belt (Cita et al. 1995 ). Three new brine-filled anoxic basins (Urania, l'Atalante and Discovery) were discovered. The brines originated from submarine dissolution of Messinian evaporites and are different in the various basins. The sedimentary record strongly differs from basin to basin. These brine lakes are very young (35 000 years or less). A drastic change in sedimentation rate recorded in the Discovery Basin suggests that basin collapse was sudden and followed by progressive development of basin anoxia. Some cores were analyzed with a prototype multisensor for P-wave velocity, magnetic susceptibility and density. Sapropels show up as abrupt decreases in P-wave velocity and density, and tephra as sudden increases in magnetic susceptibility. Mud breccia displays P-wave velocities greater than pelagic marls, with peaks related to lithic clasts. Anoxic sediments have high P-wave velocities; peaks are associated with gypsum crystals.  相似文献   
317.
变质核杂岩是岩石圈伸展减薄的典型构造形式,也是研究岩石圈减薄机制的"窗口"。在大量前人研究的基础上,对华南中生代岩石圈减薄的时间与机制和华南变质核杂岩的研究现状进行了综述。变质核杂岩是华南中生代岩石圈伸展与减薄的重要产物,它在华南地区的广泛出现为讨论岩石圈伸展与减薄作用提供了重要约束。同位素地质年代统计表明,华南地区变质核杂岩主体形成与剥露的峰期介于140~120Ma的早白垩世,它们的出现与华南大规模岩石圈减薄、岩浆活动及大规模成矿作用的时间非常吻合。本文还介绍了一些关于变质核杂岩和岩石圈减薄机制研究的最新进展,这些研究进展表明,加强对变质核杂岩等伸展构造的研究,对研究岩石圈板块演化的时间、机制、运动学,进而建立更加完善的岩石圈演化模型具有重要意义。  相似文献   
318.
U–Pb SHRIMP ages obtained in zircons from the Sotosalbos and Toledo anatectic complexes in Central Spain give new constraints to the evolution of the inner part of the Hercynian Iberian belt. Pre-Hercynian ages in zircons from the Sotosalbos complex (∼464 Ma) are well preserved and reveal that an age diversity of the Lower Paleozoic magmatism in the area exists, as previous data on westernmost orthogneisses yield significant older ages. Zircon ages in the pelite-derived granites from the Toledo complex also show an important Neoproterozoic age component which points to a metasedimentary protolith deposited maximally 560 Ma ago. Younger zircon populations in both complexes at ∼330 Ma in the Sotosalbos region and ∼317 Ma in the Toledo complex indicate an important diachronism between the anatectic processes in both areas but also that these processes are mainly unrelated to the generation of the later Hercynian granite batholith of Central Spain, which could be of deeper crustal derivation. In addition, as migmatization occurred late in the metamorphic cycle, after peak conditions were attained, the age of anatexis is younger than the age of the main Hercynian metamorphic event, which still is not well constrained. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
319.
位于亚洲中部的塔里木克拉通是中国三大古老克拉通之一,经历了新元古时期罗迪尼亚(Rodinia)大陆聚合和裂解。然而,关于塔里木在该时期的构造演化仍然存在较多争议。本文对塔里木北缘库鲁克塔格地区南华系地层中流纹岩及伴生的正长花岗岩开展岩石学、地球化学、锆石U-Pb年代学和Hf同位素研究,结果表明:正长花岗岩与流纹岩是一套具有"时、空、源"一致的花岗质火山-侵入杂岩组合,锆石U-Pb年龄分别为735±10 Ma和738.9±5.4 Ma,同为新元古代南华纪岩浆作用的产物。它们具有高硅(69.85%~73.87%)、低铁(2.36%~2.96%)、贫镁(0.16%~0.75%)和富碱(Na2O+K2O=7.51%~9.05%)的特征,属碱性系列、过铝质岩石。富集K、Rb、Th等大离子亲石元素和轻稀土元素,亏损Nb、Ta、Ba、Sr、P和Ti等。具A2型花岗岩的特点,是俯冲挤压向减压伸展构造转换背景下岩浆活动的产物。锆石Hf同位素组成较均一, εHf(t)值大多为-17.4~-10.6之间,其二阶段模式年龄TDM2为2732~2321 Ma,表明岩浆来源于太古宙-元古宙古老结晶基底。结合前人研究表明,大约在735 Ma塔里木北缘开始进入减压伸展的拉张环境,之后可能发生了Rodinia超大陆的裂解。  相似文献   
320.
Four iron-containing natural oxalates, usually classified as organic minerals, are known (humboldtine, minguzzite, stepanovite and zhemchuzhnikovite). Their occurrences and general properties are presented and briefly discussed. The subsequent part of the review is devoted to the discussion of synthetic oxalato-complexes, analogous to these natural species, including usual synthetic procedures and a thorough analysis of their crystallographic and structural peculiarities. The thermal, spectroscopic and magnetic properties of these complexes are also analyzed in detail and comparisons with other closely related complexes are also included in the discussions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号