首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   19篇
  国内免费   40篇
测绘学   5篇
大气科学   15篇
地球物理   73篇
地质学   159篇
海洋学   14篇
天文学   2篇
综合类   11篇
自然地理   44篇
  2024年   1篇
  2022年   9篇
  2021年   6篇
  2020年   9篇
  2019年   8篇
  2018年   7篇
  2017年   7篇
  2016年   5篇
  2015年   4篇
  2014年   12篇
  2013年   16篇
  2012年   15篇
  2011年   20篇
  2010年   9篇
  2009年   24篇
  2008年   21篇
  2007年   26篇
  2006年   18篇
  2005年   16篇
  2004年   5篇
  2003年   10篇
  2002年   8篇
  2001年   5篇
  2000年   16篇
  1999年   6篇
  1998年   11篇
  1997年   6篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   3篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有323条查询结果,搜索用时 687 毫秒
81.
托木尔峰自然保护区旅游资源及开发构想   总被引:3,自引:2,他引:1  
该区是新疆最重要的自然景观旅游区之一,区内以著名的山峰、气势磅薄的冰川、优美的风景河段,幽密的原始森林、珍鸹的野生动物,奇特的象形山石为特征。凭借资源的独特性和高品位,合理规划,贯彻旅游业持续发展原则,积极发展生态旅游,加强宣传与促销,可以使其成为全国著名的旅游区,并可与库库县以人文景观为主的旅游我互为依托,相互辉映,共创阿克苏地区旅游业的美好前景。  相似文献   
82.
Recent seismological studies of the Cameroon Volcanic Line show that Mt. Cameroon is the most active centre, so a permanent seismic network of six seismographs was set up in its region between 1984 and 1986. The network was reinforced with temporary stations up till 1987, and the local seismicity was studied. Here we emphasise a statistical analysis of seismic events recorded by the permanent seismic stations. Four swarms lasting 9 to 14 months are identified at intervals of 2–3 years. Most earthquakes are felt (intensity and magnitude, respectively, less than VI MM and 5) during the first three swarms and a few during repose periods. The main focal regions are the northwest and southeast flanks, the Bimbia and Bioko regions in the South of the volcano. Hypocentres are distributed from the surface to 60 km depth indicating crustal and subcrustal activities. The subcrustal events are observed only in the southeast flank, they are the most regular earthquakes with a monthly frequency of 9 to 15 events. They are characteristic earthquakes with magnitude 2.8 ± 0.1. Between 1984 and 1992, their yearly mean time interval between successive events range from 50 to 86 hours. For that period their occurrence can be modelled as a stationary renewal process with a 3-day period. But the analysis of variance shows possible significant differences among yearly means. A Weibull's distribution confirms that the time intervals between successive deep events are not independent, and in 1993 a swarm of deep earthquakes is recorded, hence a non-loglinear magnitude/frequency relation. The deep seismicity is thought to be associated with a zone of weakness (perhaps a magmatic conduit) and may have some close relationship with the magmatic activity.  相似文献   
83.
Until the 18 May 1980 eruption of Mount St. Helens, a debris fan and adjacent forest downslope from the dacitic Goat Rocks dome, on the north flank of the volcano, contained evidence that the dome was active in 1842 or 1843. The fan was destroyed by the debris avalanche of 18 May. Before 1980, the oldest tree cored on the debris fan showed that the fan predated 1855 by a few years. The young age of this tree suggests that the dome was active several decades after extrusion of the nearby andesitic floating island lava flow, dated to 1800. An anomalous series of narrow rings that starts with the 1843 ring is present in cores from two older trees adjacent to the fan. These ring-width patterns imply that these trees were damaged in late 1842 or early 1843 by flowage material from the dome; the trees were probably singed by an ash-cloud surge that originated on the dome as a hot-rock avalanche. Several lines of evidence suggest that the anomalous ring patterns record tree injury by surge, rather than by lahars or nonvolcanic causes (climate or insects). First, comparable ring patterns formed in all sampled trees that survived the 18 May surge, but formed in only a few sampled trees abraded or partially buried by 18 May lahars. Second, a 13-cm fine-ash layer, consistent with either tephra fall or surge emplacement, was present on the 1840s forest floor; yet the lack of similar tree-ring responses to 1980 tephra fall shows that such minor tephra fall could not have caused the ring patterns. Third, identical 1843 narrow-ring patterns are absent in control trees further from the volcano. The ring patterns of the trees adjacent to the Goat Rocks fan provide the first field evidence that the dome was active in late 1842 or early 1843. Thus, the new tree-ring dates confirm stratigraphic evidence for the youth of the activity of the Goat Rocks dome. They also link historical accounts of mid nineteenth century volcanism at Mount St. Helen with continuing dome extrusion. The dates additionally corroborate and revise the dacite-andesite-dacite petrologic cycle interpretation of Mount St. Helens' Goat Rocks eruptive period (1800–1857). They constrain the cycle to no more than 43 years. Lastly, the dates support the notion that the vent that erupted the 1800 dacitic T tephra was different from the one that produced the Goat Rocks dome. We infer that the magma that formed the floating-island lava flow plugged the T tephra vent. This forced residual magma from the compositionally zoned magma chamber into an alternate conduit. The second conduit produced the unnamed 1842 lithic tephra and the Goat Rocks dome.  相似文献   
84.
《地学前缘(英文版)》2020,11(6):2157-2168
Mount Cameroon volcano has erupted several times in the 20th Century with documented eruptions in 1909, 1922, 1954, 1959, 1982, 1999 and 2000. Evidence of historic volcanism is represented by several older lava flows and lahar deposits around the flanks of the volcano. This study aims to assess the evolution of Mount Cameroon volcanism through its eruptive history via interpretation of mineralogical, whole rock geochemical and Pb, Sr, Nd isotope data generated from historic and recent lava flows. In this study, samples were collected from the 1959, 1982, 1999 and 2000 eruptions and from several historic eruption sites with unknown eruption dates.Evaluation of major and trace element data demonstrates that Mount Cameroon is geotectonically associated with within-plate Ocean Island Basalt Settings. More than 90% of the studied historic lavas (n ​= ​29) classify as tephrites and basanites whereas the modern lavas (n ​= ​38) are predominantly trachybasalts, demonstrating evolution from primitive to evolved lavas over time typically in response to fractional crystallization. Petrographically, the lavas are porphyritic with main mineral phases being olivine, clinopyroxene, plagioclase feldspars and Fe–Ti–Cr oxides. The 1982 lavas are predominantly aphyric and dominated by lath-shaped flow-aligned plagioclase in the groundmass. Olivine chemistry shows variable forsterite compositions from Fo60–89. Clinopyroxenes vary from diopside through augite to titanaugite with chemical composition ranges from Wo45En32Fs7 to Wo51En47Fs17. Plagioclase feldspars vary from labradorite (An56–70) to bytownite (An80–87). For the Fe–Ti–Cr oxides, calculated ulvöspinel component shows a wide variation from ulv38–87. CIPW-normative classification on the Di-Ol-Hy-Qz-Ne system shows that all Mount Cameroon lavas are nepheline-normative (Ne ranges from 4.20 wt.% to 11.45 ​wt.%).Radiogenic isotope data demonstrate that Mount Cameroon lavas are HIMU (or high μ ​= ​238U/204Pb), characterized by 206Pb/204Pb ​= ​20.19–20.46, 207Pb/204Pb ​= ​15.63–15.69, 208Pb/204Pb ​= ​40.01–40.30, 87Sr/86Sr ​= ​0.70322–0.70339 (εSr ​= ​−21.37 to −18.96) and 143Nd/144Nd ​= ​0.51276–0.51285 (εNd ​= ​+2.29 to +4.05). The historic lavas show stronger HIMU signature relative to the modern lavas, suggesting evolution towards less HIMU signatures over time. This study has revealed that Mount Cameroon volcanism has evolved from primitive magmas characterized by stronger HIMU signatures with high 206/204Pb and 208/204Pb isotopes, low SiO2 and high Mg, Ni, Cr content towards lower HIMU signatures with relatively higher SiO2, lower Mg, Cr and Ni compositions. The geochemical and isotopic changes, which account for the evolution of magmatism on Mount Cameroon occur over long periods of time because all the modern lavas erupted within the last 100 years are isotopically homogeneous, with very limited variation in SiO2 compositions.  相似文献   
85.
玉龙山西麓更新世冰川作用及其与金沙江河谷发育的关系   总被引:23,自引:5,他引:18  
在玉龙山东麓更新世冰川作用研究的基础上,对其西麓和金沙江河谷中的古冰川与冰水沉积物的分布和特征进行了调查.结合ESR测年,划分出4次冰期,即0.7~0.6MaB.P.的玉龙冰期,0.53~0.45MaB.P.的干海子冰期,0.31~0.13MaB.P.的丽江冰期和晚更新世中晚期的大理冰期,其中玉龙冰期为规模较大的山麓冰川,丽江和大理冰期为山谷冰川,干海子冰期则为山麓冰川与山谷冰川的过渡类型.来自玉龙山西坡的玉龙冰期冰碛物充填于现今金沙江谷底的事实和大具金沙江下渡口西岸早更新世金沙江砾石层的发现表明,金沙江在早更新世早期即已存在,也说明了在该段金沙江河谷中多处发现的湖相沉积物是冰川沉积堰塞河谷而成石鼓古湖的结果.在该段金沙江河谷中仅发现拔河50m左右以内的4级河流阶地,且往往以这些湖相沉积为基座的现象,则是石鼓古湖被外泄后金沙江现代河谷形成的结果.  相似文献   
86.
2008年12月4~5日,山东半岛出现了1次冷流暴雪过程,渤海上的辐合带对这次暴雪过程起到了重要的作用。本文利用观测资料和数值模式对这次过程进行了研究,探讨渤海辐合带的发展演变机制及对山东半岛冷流暴雪的影响,并分析了太行山脉对渤海辐合带的影响。结果表明,渤海上空生成的西北东南向的中尺度辐合带造成了以烟台-牟平-文登为中心的西北东南向的降雪带。太行山脉的阻挡作用使绕太行山的西北气流在太行山背风侧形成辐合,同时在低层大气存在1个暖脊,所以在渤海形成了1个西北东南向的辐合带。在西北风的水平平流和非地转风的作用下,渤海辐合带向东北移动,当渤海西北岸出现北风后,渤海辐合带西北部在北风的水平平流作用下向南移动,而渤海辐合带东南部在西北风水平平流和非地转风的作用下,继续向东北移动并与山东半岛北部的海岸锋辐合带合并增强,渤海辐合带西北和东南两部分移动方向的不同造成了辐合带的波动。渤海辐合带增强后登陆山东半岛,造成山东半岛西北东南向降雪带。对这次冷流暴雪个例的分析发现,太行山脉通过形成背风低压中尺度系统直接影响渤海上的中尺度辐合带的发展,而渤海辐合带与山东半岛北岸附近海岸锋的耦合使辐合加强,增强了降雪强度。  相似文献   
87.
Several petrographic studies have linked accessory monazite growth in pelitic schist to metamorphic reactions involving major rock‐forming minerals, but little attention has been paid to the control that bulk composition might have on these reactions. In this study we use chemographic projections and pseudosections to argue that discrepant monazite ages from the Mount Barren Group of the Albany–Fraser Orogen, Western Australia, reflect differing bulk compositions. A new Sensitive High‐mass Resolution Ion Microprobe (SHRIMP) U–Pb monazite age of 1027 ± 8 Ma for pelitic schist from the Mount Barren Group contrasts markedly with previously published SHRIMP U–Pb monazite and xenotime ages of c. 1200 Ma for the same area. All dated samples experienced identical metamorphic conditions, but preserve different mineral assemblages due to variable bulk composition. Monazite grains dated at c. 1200 Ma are from relatively magnesian rocks dominated by biotite, kyanite and/or staurolite, whilst c. 1027 Ma grains are from a ferroan rock dominated by garnet and staurolite. The latter monazite population is likely to have grown when staurolite was produced at the expense of garnet and chlorite, but this reaction was not intersected by more magnesian compositions, which are instead dominated by monazite that grew during an earlier, greenschist facies metamorphic event. These results imply that monazite ages from pelitic schist can vary depending on the bulk composition of the host rock. Samples containing both garnet and staurolite are the most likely to yield monazite ages that approximate the timing of peak metamorphism in amphibolite facies terranes. Samples too magnesian to ever grow garnet, or too iron‐rich to undergo garnet breakdown, are likely to yield older monazite, and the age difference can be significant in terranes with a polymetamorphic history.  相似文献   
88.
This study presents major- and trace-element chemistry of plagioclase phenocrysts from the 1980 eruptions of Mount St. Helens volcano. Despite the considerable variation in textures and composition of plagioclase phenocrysts, distinct segments have been cross-correlated between crystals. The variation of Sr and Ba concentration in the melt, as calculated from the concentration in the phenocrysts using partition coefficients, suggests the cores and rims crystallised from compositionally different melts offset by the plagioclase crystallisation vector. In both of these melts Sr and Ba are correlated despite the abundance of plagioclase in the 1980 dacites. We propose that rapid crystallisation of plagioclase upon magma ascent caused a shift in melt composition towards lower Sr and higher Ba, as documented in the rims of the phenocrysts. Although the cores of the phenocrysts crystallised at relatively shallow depths, they preserve the Sr and Ba of the deep-seated melts as they ascended from a deeper region. Further magma ascent resulted in microlite nucleation, which is responsible for a similar shift to even lower Sr concentration as observed in the groundmass of post-18 May 1980 samples. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
89.
Mount Isa is a major Australian and world Pb‐Zn‐Ag mineral province. The wide varieties of mineralization in the province are believed to be closely related to the geodynamic processes of Isan Orogeny, which occurred between ca 1500 and 1620 Ma. In order to understand the geodynamic processes associated with the Isan Orogeny and the giant mineralization systems in the Mount Isa district, a series of numerical models has been constructed to simulate coupled mechanical–hydrological processes, using Fast Lagrangian Analysis of Continua (FLAC), a finite difference computer code. The numerical modeling results have demonstrated that the most probable far‐field stress orientation during the Isan Orogeny is the asymmetrical E–W shortening, which led to greater easternward tectonic movement at the west boundary of the district in comparison with westward movement at the east boundary. During the initial and early stage of the Isan Orogeny, the mechanical and hydrological conditions in the Leichardt Fault Trough of the West Fold Belt are much more favorable for fluid accumulation and mineralization than in the East Fold Belt. The Mount Isan fault zone developed as a high dilation shear zone where the fluids were focused. As the asymmetrical shortening progressed, shortening deformation and shear strain localization became intensified in the eastern part of the orogenic district. The eastern region therefore became a more favorable locality for hydrothermal mineralization. This structural development feature seems to explain why mineralization in the East Fold Belt is generally later than in the West Fold Belt. Fluid production from the Williams–Naraku granites could result in fluid over‐pressuring, and this probably contributed to the extensive brecciation and related mineralization in the East Fold Belt.  相似文献   
90.
We compare eruptive dynamics, effects and deposits of the Bezymianny 1956 (BZ), Mount St Helens 1980 (MSH), and Soufrière Hills volcano, Montserrat 1997 (SHV) eruptions, the key events of which included powerful directed blasts. Each blast subsequently generated a high-energy stratified pyroclastic density current (PDC) with a high speed at onset. The blasts were triggered by rapid unloading of an extruding or intruding shallow magma body (lava dome and/or cryptodome) of andesitic or dacitic composition. The unloading was caused by sector failures of the volcanic edifices, with respective volumes for BZ, MSH, and SHV c. 0.5, 2.5, and 0.05 km3. The blasts devastated approximately elliptical areas, axial directions of which coincided with the directions of sector failures. We separate the transient directed blast phenomenon into three main parts, the burst phase, the collapse phase, and the PDC phase. In the burst phase the pressurized mixture is driven by initial kinetic energy and expands rapidly into the atmosphere, with much of the expansion having an initially lateral component. The erupted material fails to mix with sufficient air to form a buoyant column, but in the collapse phase, falls beyond the source as an inclined fountain, and thereafter generates a PDC moving parallel to the ground surface. It is possible for the burst phase to comprise an overpressured jet, which requires injection of momentum from an orifice; however some exploding sources may have different geometry and a jet is not necessarily formed. A major unresolved question is whether the preponderance of strong damage observed in the volcanic blasts should be attributed to shock waves within an overpressured jet, or alternatively to dynamic pressures and shocks within the energetic collapse and PDC phases. Internal shock structures related to unsteady flow and compressibility effects can occur in each phase. We withhold judgment about published shock models as a primary explanation for the damage sustained at MSH until modern 3D numerical modeling is accomplished, but argue that much of the damage observed in directed blasts can be reasonably interpreted to have been caused by high dynamic pressures and clast impact loading by an inclined collapsing fountain and stratified PDC. This view is reinforced by recent modeling cited for SHV. In distal and peripheral regions, solids concentration, maximum particle size, current speed, and dynamic pressure are diminished, resulting in lesser damage and enhanced influence by local topography on the PDC. Despite the different scales of the blasts (devastated areas were respectively 500, 600, and >10 km2 for BZ, MSH, and SHV), and some complexity involving retrogressive slide blocks and clusters of explosions, their pyroclastic deposits demonstrate strong similarity. Juvenile material composes >50% of the deposits, implying for the blasts a dominantly magmatic mechanism although hydrothermal explosions also occurred. The character of the magma fragmented by explosions (highly viscous, phenocryst-rich, variable microlite content) determined the bimodal distributions of juvenile clast density and vesicularity. Thickness of the deposits fluctuates in proximal areas but in general decreases with distance from the crater, and laterally from the axial region. The proximal stratigraphy of the blast deposits comprises four layers named A, B, C, D from bottom to top. Layer A is represented by very poorly sorted debris with admixtures of vegetation and soil, with a strongly erosive ground contact; its appearance varies at different sites due to different ground conditions at the time of the blasts. The layer reflects intense turbulent boundary shear between the basal part of the energetic head of the PDC and the substrate. Layer B exhibits relatively well-sorted fines-depleted debris with some charred plant fragments; its deposition occurred by rapid suspension sedimentation in rapidly waning, high-concentration conditions. Layer C is mainly a poorly sorted massive layer enriched by fines with its uppermost part laminated, created by rapid sedimentation under moderate-concentration, weakly tractive conditions, with the uppermost laminated part reflecting a dilute depositional regime with grain-by-grain traction deposition. By analogy to laboratory experiments, mixing at the flow head of the PDC created a turbulent dilute wake above the body of a gravity current, with layer B deposited by the flow body and layer C by the wake. The uppermost layer D of fines and accretionary lapilli is an ash fallout deposit of the finest particles from the high-rising buoyant thermal plume derived from the sediment-depleted pyroclastic density current. The strong similarity among these eruptions and their deposits suggests that these cases represent similar source, transport and depositional phenomena.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号