首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   5篇
  国内免费   4篇
测绘学   2篇
大气科学   10篇
地球物理   4篇
地质学   12篇
海洋学   9篇
天文学   4篇
  2024年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   6篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   6篇
  2007年   2篇
  2004年   2篇
  2003年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1994年   2篇
  1993年   1篇
  1984年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
11.
A huge hydrothermal field, named the "Hakurei Sulfide Deposit" (HSD) was discovered in the North Myojin Rift (NMR), Izu–Bonin Back-Arc Rift (BAR) during the 2003 survey cruise of R/V Hakurei-maru No.2 . This paper investigates the geotectonic features and the tectonic setting of ore deposits between the NMR and the Hokuroku Basin, which is representative of kuroko fields in Japan. The topographic features of the NMR and the Hokuroku Basin are similar. Both have a clear ring structure surrounded by faults and the east–west width is almost the same. Many kuroko deposits were formed on the extrusion centers of the five pre-mineral acidic volcanic complexes, located in a loop inside the Hokuroku Basin. In the case of the NMR, seven submarine volcanoes are also located in a loop, and the HSD formed inside the summit caldera of Bayonnaise Knoll, which is one of the seven volcanoes. These topographic similarities highlight that the NMR is a modern analog of the Hokuroku Basin. Identifying such similarities is extremely useful when prospecting kuroko deposits on land equivalents as well as on the other segments of the Izu–Bonin BAR. The probability of finding kuroko deposits on land is expected to increase when the following are identified: (i) location of back-arc rift and the volcanic front; (ii) direction of the arc–trench system and intra-rift faults (and/or fracture zone); (iii) position of submarine volcanoes surrounding a back-arc rift; and (iv) intersections of a caldera fault and intra-rift fault (and/or fracture zone) inside the summit caldera of submarine volcanoes. Within these aforementioned points a ring structure, acidic volcanic complexes that circle the circuit and submarine calderas along the volcanic front, are an important indication of submarine hydrothermal deposits.  相似文献   
12.
The reaction kinetics of S(IV) autoxidation catalyzed by single metal ions of Mn(II) and Fe(II) or Fe(III) and by a mixture of Mn(II) and Fe(II) under the conditions representative for acidified atmospheric liquid water was investigated. A simple power law kinetic model based on the stability constants for metal-sulfito complexes formed during the first step of a radical chain mechanism predicts well the kinetics for the reactions catalyzed by single metal ions. The calculated stability constants for iron (5.7×103 dm3 mol–1) and manganese (10×104 dm3 mol–1) sulfito complexes are close to those reported in the literature. The catalytic synergism between Mn(II) and Fe(II) was confirmed. For this system the following power law rate equation was suggested:rtot = SFe · rFe + SMn · rMn ,where rFe and rMn are the reaction rates in the presence of Fe(II) and Mn(II), respectively. SFe and SMn are proportional factors, which account for the synergistic effect. The proposed power law rate equation predicts the reaction kinetics very well. The values of SFe (1.35) and SMn (15) indicate that the influence of Fe(II)/Fe(III) on Mn(II)/Mn(III) cycling is larger than, vice versa, agreeing with the reaction mechanism proposed for the S(IV) autoxidation catalyzed by mixed metal ions.  相似文献   
13.
In a high-level radioactive waste (HLW) repository, pH has an impact on the solubility, migration, and adsorption of radionuclides. Thus, understanding the effects of pH on the diffusion of radionuclides is essential for long-term disposal of HLW. In this work, the diffusion behaviors of Re(VII) and Se(IV) in compacted Gaomiaozi (GMZ) bentonite at different pH have been investigated by a through-diffusion method. The effective diffusion coefficient, i.e., De values of Re(VII) and Se(IV) were in the range of (1.0–2.4) × 10−11 m2/s at pH 3.0–10.0 and (0.38–2.3) × 10−11 m2/s at pH 3.0–9.0. In the case of Re(VII), the De values remained almost unchanged probably because ReO4 was the dominant species in the pH range of 3.0–10.0. In the case of Se(IV), whose predominant species were HSeO3 at pH < 9.0 and SeO32− at pH ≥ 9.0, the De values decreased by a factor of 3–6 at pH 9.0, i.e., De (pH < 9.0)/De (pH 9.0) ≈ 3–6, implying that the species with a higher valence state had a stronger anion exclusion effect. The decrease in De values can be explained by the diffusion species of Se(IV). Additionally, the rock capacity factor α decreased with the increase of pH. HSeO3 was absorbed on GMZ bentonite with distribution coefficient Kd values in the range of (1.0–2.5) × 10−4 m3/kg at pH ≤ 8.0, whereas SeO32− was negligibly sorbed at pH > 8.0.  相似文献   
14.
原子荧光光谱法测定天然水体中的Se(IV)   总被引:3,自引:0,他引:3       下载免费PDF全文
姚庆祯  张经 《海洋科学》2003,27(4):63-67
采用氢化物—原子荧光光谱法(HG-AFS),在1mol/L HCl介质中用KBH4作还原剂测定天然水体中痕量Se(IV)。利用正交实验对实验条件进行了优化选择,在确定的条件下,方法的检出限为0.06nmol/L,对Se(IV)含量为0.51nmol/L和1.14nmol/L的样品分析精密度为3.9%和3.5%,方法的回收率为96%-105%,线性范围为0.06—250nmol/L。在不同介质中工作曲线的变动范围小于5%。  相似文献   
15.
The reactivity of dissolved iron compounds towards different pollutants and photooxidants in atmospheric liquid water depends upon the oxidation state and speciation of iron. Our measurements of the oxidation state of dissolved iron eluted from aerosol particles (Dae: 0.4–1.6 m) collected in the urban atmosphere of Ljubljana showed that a large fraction of the iron content is present as Fe(II). The concentration ratio [Fe(II)]/[Fe(III)] varied between 0.9 and 3.1. The kinetics of S(IV) autoxidation catalyzed by Fe(II) under the conditions representative for acidified atmospheric liquid water and the influence of oxalate on this reaction under dark conditions was investigated. The reaction rate is the same if Fe(II) or Fe(III) is used as a catalyst under the condition that Fe(II) can be oxidized in Fe(III), which is the catalytically active species. Oxalate has a strong inhibiting effect on the S(IV) autoxidation in the presence of Fe(II). The reaction is autocatalytic with an induction period, that increases with higher concentrations of oxalate. The inhibiting effect of oxalate differs according to whether iron is initially in the Fe(II) or Fe(III) state. However, in both cases the inhibition by oxalate is a result of the formation of complexes with the catalyst.  相似文献   
16.
Autoxidation of S(IV) initiated by manganese sulphate or potassium peroxydisulphate in alkaline aqueous solutions was significantly slowed down by dissolved isoprene, which decayed in the process. The laboratory experiments were carried out in a batch, perfectly mixed reactor, which had no gas space. The concentration–time profiles of oxygen were measured with a Clark-type electrode. The profiles of sulphite species and of isoprene were evaluated from the UV spectra of solutions. The kinetic analysis indicated that isoprene reacted directly with sulphate radical anions produced during the S(IV) autoxidation. A relative second-order rate constant of (2.12 ± 0.37) × 109 M–1 s–1 was determined for this reaction at 25 °C, pH (8.0–8.5) and ionic strength of (1.7–4.9) × 10–3 M (the reference rate constant of the reaction of sulphate radical anions with sulphite ions equalled 3.4 × 108 M–1 s–1). A tentative mechanism of isoprene oxidation during S(IV) autoxidation, which included formation of isoprene – SO 4 adduct, was based on the analogy to the gas-phase reactions of isoprene and to the liquid-phase reactions of sulphate radical anions with other compounds. Atmospheric significance of the aqueous-phase reaction of isoprene with sulphate radicals was discussed. Approximate analysis showed the reaction is a potential sink for isoprene in the aqueous phase and in the gas–liquid systems of high liquid water content (LWC > 10–5 m3 m–3). The aqueous-phase oxidation of isoprene can produce secondary pollutants, and influence transformation and the long-range transport of SO2 in the atmosphere.  相似文献   
17.
海床冲淤变化对港口与航道工程建设非常重要。由于泥沙供给、人类活动和其他等因素的影响,海床冲淤变化非常复杂。洋山深水港是一个新兴的深水港口,是上海国际航运中心重要的组成部分,它的建设引起了各方的广泛关注。目前,洋山水深港一、二、三期港区在潮流运动和定期疏浚下保持着良好的水深。四期港区工程是世界上最大的全自动化深水码头,2017年12月以开港运行。本论文基于大量的地形资料、水文泥沙资料,分析了整个洋山深水港多年来的海床冲淤变化和近期四期工程海域海床冲淤变化。结果显示:1998-2010年整个洋山港区海床冲淤变化表现为较大幅度的冲淤,在洋山主通道内呈现为"南淤北冲"的格局,但是颗珠山汊道一直以来均表现冲刷的趋势;四期港区水域近一些年来也表现为一个冲刷的趋势,多年年均冲刷幅度0.7m左右;讨论了外界泥沙供给、港口工程陆域边界封堵、港池疏浚和由此带来的水流的变化以及泥沙水力特性等因素的对洋山港海域海床冲淤变化的影响,在众多因素中,颗珠山汊道的存在(或保留)对洋山西部水域或四期港区水域冲刷有着积极的作用,它的存在所产生的落潮作用对四期港区的水深维护起到重要的正面影响。  相似文献   
18.
为了研究大黄鱼(Pseudosciana crocea)peroxiredoxin Ⅳ(Lyc-Prx Ⅳ)在细胞内的抗氧化功能,构建了表达大黄鱼Prx Ⅳ的重组质粒p CMV-Lyc-Prx Ⅳ,瞬时转染人胚肾细胞(HEK-293T),利用Western blotting方法检测转染后的细胞样品中Lyc-Prx Ⅳ的表达情况,并通过测定细胞内过氧化氢浓度来评价Lyc-Prx IV的体内抗氧化作用.结果显示,Lyc-Prx Ⅳ可在转染重组质粒p CMV-Lyc-Prx Ⅳ的HEK-293T细胞中表达,且细胞中A560处的吸光值在转染后6、12、24 h后分别为0.154、0.116以及0.162,而瞬时转染空载体p CMV后细胞样品在A560处的吸光值在转染后一直稳定在0.260左右,说明细胞中过氧化氢的浓度在转染后6、12、24 h时明显低于瞬时转染空载体p CMV细胞中的过氧化氢浓度(p〈0.01).表明Lyc-Prx Ⅳ在生物体内可以分解过氧化氢,参与生物体内氧化还原状况的调控.  相似文献   
19.
柴达木盆地扎X井区目前是扎哈泉区块产量的主要贡献区,也是后期建产重要的潜力区。通过对X井区上新统下油砂山组Ⅳ油层组综合研究,认为其属于中孔中低渗储层,处于中成岩阶段A期。压实作用对储层物性的影响较小,胶结作用是孔隙减小的主要原因,溶蚀作用对孔隙的增加有一定的建设作用。  相似文献   
20.
Laboratory experiments were conducted with real atmospheric aerosol particles as well as with synthetic solutions under dark conditions, to simulate some of the chemical features of aerosols. In solutions obtained by the leaching of aerosols (size range >D ae: 0.4–1.6 m) that contained sufficient amounts of transition metal ions (e.g. Fe) and organic species (e.g. oxalate), S(IV) oxidation rates were significantly lower than those expected from the Fe-catalyzed S(IV) autoxidation in Milli-Q water. The results suggest that oxalate is responsible for much of the observed inhibition. Acetate and formate also inhibit the reaction, but to a much lesser extent. Oxalate has a strong inhibiting effect on the Fe-catalyzed S(IV) autoxidation at all investigated pH values (2.8, 3.7 and 4.5). It was established that Fe(III)-oxalato complexes affect the redox cycling of Fe(II)/Fe(III) and that the observed decrease of the reaction rate is caused by the reduced amount of catalytically active Fe(III) due to the complexation with oxalate. For the system Fe-S(IV)-O2-oxalate at initial pH 3.7 the reaction rate was calculated using exponential simplification to account for oxalate influence on the amount of free Fe(III) by the following equation:–rS(IV) = k · [S(IV)] · [Fe(III))] · e -b·[Ox]  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号