首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2085篇
  免费   717篇
  国内免费   283篇
测绘学   14篇
大气科学   9篇
地球物理   1242篇
地质学   1609篇
海洋学   118篇
综合类   45篇
自然地理   48篇
  2024年   6篇
  2023年   25篇
  2022年   48篇
  2021年   79篇
  2020年   59篇
  2019年   100篇
  2018年   103篇
  2017年   103篇
  2016年   127篇
  2015年   108篇
  2014年   164篇
  2013年   179篇
  2012年   124篇
  2011年   165篇
  2010年   85篇
  2009年   179篇
  2008年   165篇
  2007年   155篇
  2006年   118篇
  2005年   97篇
  2004年   100篇
  2003年   104篇
  2002年   76篇
  2001年   77篇
  2000年   65篇
  1999年   56篇
  1998年   51篇
  1997年   36篇
  1996年   53篇
  1995年   50篇
  1994年   47篇
  1993年   38篇
  1992年   29篇
  1991年   20篇
  1990年   14篇
  1989年   12篇
  1988年   18篇
  1987年   7篇
  1986年   7篇
  1985年   1篇
  1984年   11篇
  1983年   3篇
  1981年   1篇
  1979年   12篇
  1978年   5篇
  1977年   2篇
  1954年   1篇
排序方式: 共有3085条查询结果,搜索用时 703 毫秒
21.
通过对郑州市城区深部基岩层热储的岩性、构造、热源及盖层条件分析研究,总结了该区热储特征,并首次提出了断裂循环型带状热储构造网络体系的构思,这对该区今后深部基岩层热储的研究具有一定的参考意义。  相似文献   
22.
黄骅坳陷北大港构造带沙河街组沉积体系定量研究   总被引:2,自引:0,他引:2       下载免费PDF全文
针对陆相湖盆沉积特征,以T A Cross高分辨率层序地层学理论为指导,在大量岩心、测井和地震资料研究的基础上,定量研究了黄骅坳陷北大港构造带沙河街组沉积体系和沉积物源特征,确定了沙河街组沉积时期总体发育近岸水下扇、滩坝、深水重力流水道、扇三角洲前缘和滑塌浊积扇等主要沉积相类型。中期基准面旋回A-D层序沉积时期发育近岸水下扇和扇三角洲前缘—前扇三角洲—滑塌浊积扇沉积体系;中期基准面旋回E-F层序沉积期间发育有利于油气储集的近岸水下扇和滩坝砂体;中期基准面旋回G层序沉积时期主要发育重力流主水道—重力流水道侧缘以及近岸水下扇沉积砂体;中期基准面旋回H层序沉积时期主要发育重力流主水道—重力流水道侧缘沉积体系。最后,预测了有利岩性圈闭发育的沉积相带和地区。  相似文献   
23.
黄骅坳陷埕北断坡不整合特征与油气成藏   总被引:2,自引:0,他引:2       下载免费PDF全文
黄骅坳陷埕北断坡处于歧口凹陷向埕宁隆起过渡的斜坡带上,发育多个不整合,这些不整合对该区的油气成藏起重要作用。利用地震资料,在剖面上将不整合划分为5种类型:褶皱不整合、断褶不整合、削截不整合、超覆不整合、平行不整合。其中平行不整合分布在凹陷区,褶皱不整合分布在基底,断褶不整合分布在大断裂下降盘,削截不整合分布在大断裂上升盘,而超覆不整合多分布在隆起斜坡区;利用测井资料,在纵向上将不整合划分为3层结构:不整合面之上岩石、风化粘土层及半风化岩石,由于每层结构的岩性与厚度不同,形成ACE型、ADE型、BCE型和BDF型4种岩性配置模式。不整合构成埕北断坡油气侧向运移的重要通道,同时在其之上形成超覆不整合油气藏,在其之下依靠风化粘土层遮挡形成削截不整合与褶皱不整合油气藏。勘探证实,研究区众多油气显示或油气藏均位于不整合面上、下50 m范围内。开展不整合与油气成藏关系研究,将拓宽黄骅坳陷隐蔽油气藏的勘探空间,对我国东部油气资源挖潜具有重要的理论与实践意义。  相似文献   
24.
Daily averaged tilt component data from two sites of the Central Apennines (Italy) and of the Southern Caucasus (Georgia), respectively, revealed intermediate-term tilts as possible precursors to earthquakes (M=3.0÷4.7) which occurred in the above-mentioned seismic areas within a distance of 50 km from the sites. A good temporal correlation as well as a fair spatial correspondence between these residual tilts (with amplitude and duration of some microradians and months, respectively) and main shocks were pointed out, by removing both secular trends and seasonal thermoelastic effects from the raw tilts. An attempt was made to justify the above-mentioned results, based on the assumption that the observed intermediate-term preseismic tilts are the manifestation of aseismic creep episodes of comparable duration in the fault materials of thrust faults close to the tilt sites. The mechanism refers to a strain field slowly propagating from the preparation focal area to the tilt site, through crustal blocks separated by weak transition zones. This propagation is thought to be the cause of the local aseismic fault slip recorded by the tiltmeters. Previously, both discrete structures and strain propagation effects were revealed in the Central Apennines and are thought also to exist in the Southern Caucasus. As in the past, the rheological properties of fault materials are revealed as viscoelastic ones. In fact, creep equations obtained by applying several viscoelastic models on our data, proved to fit quite well some of the observed tilt precursors, producing viscosity and rigidity values very similar to those reported in literature.Professor Petr Viktorovich Manjgaladze died during the writing of this paper  相似文献   
25.
We present results from petrophysical analysis of a normal fault zone with the aim of defining the flow pathways and their behavior during seismic and interseismic periods. Data are obtained on porosity geometry, strain structure and mineralogy of different domains of a normal fault zone in the Corinth rift. Data point out a close relationship between mineralogy of the clayey minerals, porosity network and strain structures and allow definition of a macroscopic anisotropy of the flow parameters with a strong control by microscopic ultracataclasite structures. The Pirgaki fault zone, developed within pelagic limestone, has a sharp asymmetric porosity profile, with a high porosity volume in the fault core and in the damage zone of the hanging wall. From porosity volumes and threshold measurements, a matrix permeability variation of 6 orders of magnitude could be expected between the protolith and the fault core. Modifications of this pathway during seismic and interseismic phases are depicted. Healing of cracks formed during seismic slip events occurred in the fault core zone and the porous network in the damage zone is sealed in a second step. The lens geometry of the fault core zone is associated with dissolution surfaces and open conduits where dissolved matter could move out of the fault core zone. These elementary processes are developed in particular along Riedel's structures and depend on the orientation of the strain surfaces relative to the local stress and depend also on the roughness of each surface type. P-surfaces are smooth and control shearing process. R-surfaces are rough and present two wavelengths of roughness. The long one controls localization of dissolution surfaces and conduits; the short one is characteristic of dissolution surfaces. The dissolved matter can precipitate in the open structures of the hanging wall damage zone, decreasing the connectivity of the macroscopic conduit developed within this part of the fault zone.  相似文献   
26.
This paper reviews the data concerning the fracture network and the hydraulic characteristics of faults in an active zone of the Gulf of Corinth. Pressure gap measured through fault planes shows that in this area the active normal faults (Aigion, Helike) act, at least temporarily and locally, as transversal seal. The analysis of the carbonate cements in the fractures on both the hangingwall and the footwall of the faults also suggests that they have acted as local seals during the whole fault zone evolution. However, the pressure and the characteristics of the water samples measured in the wells indicate that meteoric water circulates from the highest part of the relief to the coast, which means it goes through the fault zones. Field quantitative analysis and core studies from the AIG-10 well have been performed to define both regional and fault-related fracture networks. Then laboratory thin section observations have been done to recognize the different fault rocks characterizing the fault zone components. These two kinds of approach give information on the permeability characteristics of the fault zone. To synthesize the data, a schematic conceptual 3D fluid flow modeling has been performed taking into account fault zone permeability architecture, sedimentation, fluid flow, fault vertical offset and meteoric water influx, as well as compaction water flow. This modeling allows us to fit all the data with a model where the fault segments act as a seal whereas the relays between these segments allow for the regional flow from the Peloponnese topographic highs to the coast.  相似文献   
27.
Grain size and grain shape analysis of fault rocks   总被引:4,自引:0,他引:4  
  相似文献   
28.
Fault slip analysis of Quaternary faults in southeastern Korea   总被引:1,自引:0,他引:1  
The Quaternary stress field has been reconstructed for southeast Korea using sets of fault data. The subhorizontal direction of the maximum principal stress (σ1) trended ENE and the direction of the minimum principal stress (σ3) was nearly vertical. The stress ratio (Φ = (σ2 − σ3) / (σ1 − σ3)) value was 0.65. Two possible interpretations for the stress field can be made in the framework of eastern Asian tectonics; (1) The σHmax trajectory for southeast Korea fits well with the fan-shaped radial pattern of maximum principal stress induced by the India–Eurasia collision. Thus, we suggest that the main source for this recent stress field in southeast Korea is related to the remote India–Eurasia continental collision. (2) The stress field in Korea shows a pattern similar to that in southwestern Japan. The origin for the E–W trending σHmax in Japan is known to be related to the mantle upwelling in the East China Sea. Thus, it is possible that Quaternary stress field in Korea has evolved synchronously with that in Japan. We suggest further studies (GPS and in situ stress measurement) to test these hypotheses.  相似文献   
29.
We performed a series of laboratory experiments in which elastic waves were transmitted across a simulated fault. Two types of experiments were carried out: (1) Normal Stress Holding Test (NSHT): normal stress was kept constant for about 3 h without shear stress and transmission waves were observed. (2) Shear Stress Increasing Test (SSIT): shear stress was gradually increased until a stick-slip event occurred. Transmission waves were continuously observed throughout the process of stress accumulation. We focused on the change in transmission waves during the application of shear stress and especially during precursory slips.It was found in NSHT that the amplitude of transmission waves linearly increased with the logarithm of stationary contact time. The increase amounted to a few percent after about 3 h. Creep at asperity contacts is responsible for this phenomenon. From a theoretical consideration, it was concluded that the real contact area increased with the logarithm of stationary contact time.We observed in SSIT a significant increase in wave amplitude with shear stress application. This phenomenon cannot be attributed to the time effect observed in NSHT. Instead, it can be explained by the mechanism of “junction growth” proposed by Tabor. Junction growth yields an increase in real contact area. It is required for junction growth to occur that the material in contact is already plastic under a purely normal loading condition. A computer simulation confirmed that this requirement was satisfied in our experiments. We also found that the rate at which the amplitude increased was slightly reduced prior to a stick-slip event. The onset time of the reduction well coincides with the onset of precursory slip. The cause of the reduction is attributed to the reset of stationary contact time due to displacement. This interpretation is supported by the result of NSHT. Taking the time of stationary contact in SSIT into account, we may expect the change in wave amplitude to be, at most, only a few percent. The observed slight reduction in increasing rate is, in this sense, reasonable. The static stiffness of the fault also decreases with precursory slip. It was also found that low frequency waves are a better indicator of precursory slip than high frequency waves. This might suggest that low frequency waves with longer wavelength are a better indicator of average behavior of faults. The problem, however, merits a further investigation. The shifts in phase were also found to be a good indicator of the change in contact state of the fault. The changes in both amplitude and phase of transmission waves are unifyingly understood through the theory of transmission coefficient presented by Pyrak-Nolte et al. Rough surfaces have a tendency to give larger stick-slips than smooth surfaces. The amount of precursory slip is larger for rough surfaces than for smooth surfaces. Although it was confirmed by a computer simulation that rough surfaces have larger contact diameters than smooth surfaces, the rigorous relationship between the surface roughness (contact diameter) and the amount of precursory slips was not established.  相似文献   
30.
To estimate the deep structure of the southern part of the Nojima Fault, southwest Japan without the influence of near-surface structures, we analyzed the Love-wave-type fault-zone trapped waves (LTWs) recorded by a borehole seismometer at 1800 m depth. We examined the polarization, dispersion, and dominant frequency of the wavetrain following the direct S-wave in each seismogram to identify the LTW. We selected eight candidates for typical LTWs from 462 records. Because the duration of the LTW increases with hypocentral distance, we infer that the low velocity fault-zone of the Nojima Fault continues towards the seismogenic depth. In addition, since the duration of the LTW increases nonlinearly with hypocentral distance, we infer that the S-wave velocity of the fault-zone increases with depth. The location of events showing the LTW indicates that the fault-zone dips to the southeast at 75° and continues to a depth of approximately 10 km. We assumed a uniform low-velocity waveguide to estimate the average structure of the fault-zone. We estimated the average width, S-wave velocity, and Qs of the fault-zone by comparing an analytical solution of the LTW with measured data. The average width, S-wave velocity, and Qs of the fault-zone are 150 to 290 m, 2.5 to 3.2 km/s, and 40 to 90, respectively. Hence the fault-zone structure with a larger width and smaller velocity reduction than the fault-zone model estimated by previous surface observation is more suitable to represent the average fault-zone structure of the Nojima fault. The present study also indicated that the shallow layers and/or a shallow fault-zone structure drastically changes the characteristics of the LTW recorded at the surface, and therefore cause a discrepancy in the fault-zone model between the borehole observation and surface observation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号