首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   683篇
  免费   144篇
  国内免费   75篇
测绘学   18篇
大气科学   120篇
地球物理   116篇
地质学   365篇
海洋学   76篇
天文学   37篇
综合类   27篇
自然地理   143篇
  2025年   1篇
  2024年   5篇
  2023年   12篇
  2022年   13篇
  2021年   27篇
  2020年   18篇
  2019年   32篇
  2018年   12篇
  2017年   30篇
  2016年   27篇
  2015年   31篇
  2014年   33篇
  2013年   44篇
  2012年   32篇
  2011年   40篇
  2010年   38篇
  2009年   49篇
  2008年   48篇
  2007年   50篇
  2006年   33篇
  2005年   52篇
  2004年   38篇
  2003年   26篇
  2002年   28篇
  2001年   34篇
  2000年   18篇
  1999年   23篇
  1998年   20篇
  1997年   11篇
  1996年   13篇
  1995年   14篇
  1994年   15篇
  1993年   8篇
  1992年   6篇
  1991年   6篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1984年   2篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
排序方式: 共有902条查询结果,搜索用时 15 毫秒
51.
Lateral moraines constructed along west to east sloping outlet glaciers from mountain centred, pre-last glacial maximum (LGM) ice fields of limited extent remain largely preserved in the northern Swedish landscape despite overriding by continental ice sheets, most recently during the last glacial. From field evidence, including geomorphological relationships and a detailed weathering profile including a buried soil, we have identified seven such lateral moraines that were overridden by the expansion and growth of the Fennoscandian ice sheet. Cosmogenic 10Be and 26Al exposure ages of 19 boulders from the crests of these moraines, combined with the field evidence, are correlated to episodes of moraine stabilisation, Pleistocene surface weathering, and glacial overriding. The last deglaciation event dominates the exposure ages, with 10Be and 26Al data derived from 15 moraine boulders indicating regional deglaciation 9600 ± 200 yr ago. This is the most robust numerical age for the final deglaciation of the Fennoscandian ice sheet. The older apparent exposure ages of the remaining boulders (14,600-26,400 yr) can be explained by cosmogenic nuclide inheritance from previous exposure of the moraine crests during the last glacial cycle. Their potential exposure history, based on local glacial chronologies, indicates that the current moraine morphologies formed at the latest during marine oxygen isotope stage 5. Although numerous deglaciation ages were obtained, this study demonstrates that numerical ages need to be treated with caution and assessed in light of the geomorphological evidence indicating moraines are not necessarily formed by the event that dominates the cosmogenic nuclide data.  相似文献   
52.
祁连山敦德冰心微粒变化特征和大气环境记录   总被引:14,自引:0,他引:14  
对祁连山敦德冰心总微粒含量、粒径分布以及总微粒含量、粗微粒含量与沙尘暴的关系进行了分析,结果表明,微粒主要来源于亚洲粉尘发源地和区域性源地,属于典型的陆源微粒。微粒含量和微粒粒径变化反映了沙尘暴的强度和波动历史,沙尘暴频率高时,微粒含量高,微粒粒径大,反之,微粒含量低,微粒粒径小。末次冰期以来,微粒含量变化呈减少趋势,暖期微粒含量低,冷期微粒含量高,夏季微粒含量高,冬季微粒含量低;不同粒径微粒相关性良好,反映了它们在来源、沉积和冰内变化方面具有相同之处。  相似文献   
53.
The Qinghai–Tibet Highway and Railway (the Corridor) across the Qinghai–Tibet Plateau traverses 670 km of permafrost and seasonally frozen-ground in the interior of the Plateau, which is sensitive to climatic and anthropogenic environmental changes. The frozen-ground conditions for engineering geology along the Corridor is complicated by the variability in the near-surface lithology, and the mosaic presence of warm permafrost and talik in a periglacial environment. Differential settlement is the major frost-effect problem encountered over permafrost areas. The traditional classification of frozen ground based on the areal distribution of permafrost is too generalized for engineering purposes and a more refined classification is necessary for engineering design and construction. A proposed classification of 51 zones, sub-zones, and sections of frozen ground has been widely adopted for the design and construction of foundations in the portion of the Corridor studied. The mean annual ground temperature (MAGT), near-surface soil types and moisture content, and active faults and topography are most commonly the primary controlling factors in this classification. However, other factors, such as local microreliefs, drainage conditions, and snow and vegetation covers also exert important influences on the features of frozen ground. About 60% of the total length of the Corridor studied possesses reasonably good frozen-ground conditions, which do not need special mitigative measures for frost hazards. However, other sections, such as warm and ice-rich or -saturated permafrost, particularly in the sections in wetlands, ground improvement measures such as elevated land bridges and passive or proactive cooling techniques need to be applied to ensure the long-term stability of thermally unstable, thick permafrost subsoils, and/or refill with non-frost-susceptible soils. Due to the long-history of the construction and management of the Corridor by various government departments, adverse impacts of construction and operation on the permafrost environment have been resulted. It is recommended that an integrated, executable plan for the routing of major construction projects within this transportation corridor be established and long-term monitoring networks installed for evaluating and mitigating the impact from anthropogenic and climatic changes in frozen-ground conditions.  相似文献   
54.
Application of dendrochronology and geomorphology to a recently emerged coastal area near Juneau, Alaska, has documented a Little Ice Age (LIA) sea-level transgression to 6.2 m above current sea level. The rise in relative sea level is attributed to regional subsidence and appears to have stabilized by the mid 16th century, based on a sea-cliff eroded into late-Pleistocene glaciomarine sediments. Land began emerging between A.D. 1770 and 1790, coincident with retreat of regional glaciers from their LIA maximums. This emergence has continued since then, paralleling regional glacier retreat. Total Juneau uplift since the late 18th century is estimated to be 3.2 m. The rate of downward colonization of newly emergent coastline by Sitka spruce during the 20th century closely parallels the rate of sea-level fall documented by analysis of local tide-gauge records (1.3 cm/yr). Regional and Glacier Bay LIA loading and unloading are inferred to be the primary mechanisms driving subsidence and uplift in the Juneau area. Climate change rather then regional tectonics has forced relative sea-level change over the last several hundred years.  相似文献   
55.
56.
We investigate the flow over Arctic leads using a mesoscale numerical model, typical of both summer and winter, under idealised conditions. We find that Arctic leads may be the source of standing atmospheric internal gravity waves during both seasons. The summertime wave may be compared with the wave generated by a small ridge, though with the phase reversed. The mechanism for exciting the wave is found to be the internal boundary layer developing due to horizontal variations in surface temperature and roughness length. During the more exploratory wintertime simulations, with substantial temperature difference between the lead and the ice surface, we find that secondary circulations and intermittent wave-breaking may occur. The effects of the lead appear far downstream.  相似文献   
57.
利用ICESat数据确定格陵兰冰盖高程和体积变化   总被引:1,自引:0,他引:1       下载免费PDF全文

两极冰盖消融是造成海平面上升的重要原因,作为世界第二大冰盖,格陵兰冰盖消融速度在进入21世纪以后明显加快,引起了广泛关注.本文利用ICESat卫星激光测高数据,探讨了坡度改正的方法,通过改进平差模型解决了病态问题,并采用重复轨道方法计算了2003年9月至2009年10月间格陵兰冰盖的体积和高程变化趋势,对格陵兰冰盖各冰川流域系统的变化情况进行了详细分析.结果表明,格陵兰冰盖在这6年间平均高程变化趋势为-16.79±0.84 cm·a-1,体积变化速率为-301.37±15.16 km3·a-1,体积流失主要发生在冰盖边缘,其中DS1、DS8等流域的体积损失正在加剧,而高程在2000 m以上的冰盖内陆地区表现出高程积聚的状态,但增长速度明显减缓.与现有研究成果的对比表明,算法优化后的本文结果更具可靠性.

  相似文献   
58.
Cryophenological records (i.e. observational series of freeze and breakup dates of ice) are of great importance when assessing the environmental variations in cold regions. Here we employed the extraordinarily long observational records of river ice breakup dates and air temperatures in northern Fennoscandia to examine their interrelations since 1802. Historical observations, along with modern data, comprise the informational setting for this analysis carried out using t-test. Temperature history of April-May season was used as cli- matic counterpart for the breakup timings. Both records (temperature and breakup) showed seven sub-periods during which their local means were distinctly different relative to preced- ing and subsequent sub-periods. The starting and ending years of these sub-periods oc- curred in temporal agreement. The main findings of this study are summarized as follows: (1) the synchrony between the temperature and river ice breakup records ruled out the possibility that the changes would have occurred due to quality of the historical series (i.e. inhomoge- neity problems often linked to historical time-series); (2) the studied records agreed to show lower spring temperatures and later river ice breakups during the 19th century, in comparison to the 20th century conditions, evidencing the prevalence of cooler spring temperatures in the study region, in agreement with the concept of the Little Ice Age (1570-1900) climate in North-West Europe; (3) the most recent sub-period demonstrate the highest spring tem- peratures with concomitantly earliest river ice breakups, showing the relative warmth of the current springtime climate in the study region in the context of the past two centuries; (4) the effects of anthropogenic changes in the river environment (e.g. construction and demolition of dams) during the 20th century should be considered for non-climatic variations in the breakup records; (5) this study emphasizes the importance of multi-centurial (i.e. historical) cryo- phenological information for highly interesting viewpoints of climate and environmental his- tory.  相似文献   
59.
It is well established that the ship-ice interaction process is quite complex and associated ice loads on the icebreaker hull is a stochastic process. Obviously, novel accurate statistical methods and models should be developed and applied to estimate extreme bow stresses.This paper studies icebreaker bow stresses based on measured distribution of ice thickness in the Arctic Ocean on the way to and from the North Pole. Since the vessel route was carefully selected searching for easier ice conditions, the Arctic Ocean crossing was not a straight linear but a meandering path. Thus, the specific ship route data was biased with respect to general ice statistics in the region, but true with respect to the route specific ice data encountered by a ship navigating in that region. Therefore the route specific ice thickness data is directly needed for ship design and navigation analysis. It is assumed that captains are competent and knowledgeable, and therefore will select a route that provides the most favourable ice conditions.This paper contributes to study of the newest Chinese self-designed polar icebreaker, serving the purpose of enhancing icebreaker operational reliability. Finite Element Method software package ANSYS/LS-DYNA has been employed to simulate bow stress pattern for a particular icebreaker operating in the Arctic Ocean. Extreme bow stresses were estimated using Naess-Gaidai method. The latter is a first application of Naess-Gaidai method to a distribution with lower bound. Thus this paper aims at introducing an efficient method of estimating route-specific icebreaker extreme bow stresses.  相似文献   
60.
The White Mountains, astride the California-Nevada stateline, are the highest and westernmost of the Great Basin ranges. This range was extensively glaciated during the Quaternary Period. Glacial landforms and scattered erratics were identified in the field using primarily morpho-and lithostratigraphic criteria, and mapped on aerial photographs and topographic maps. Topographic characteristics of the glacial deposits were analyzed using standard statistical procedures. A sequence of glacial deposits was identified in terms of six glacial stages, these glaciations named according to type site, and relative ages inferred. With the exception of perched Stage I (early) deposits along the range crest, reconstructed equilibrium-line altitudes and elevation of the glacier termini increase to the present, with glacier length and inferred size decreasing through time. Preliminary data suggest that weathering and pedogenesis are also progressive, though environmental gradients mask some of these distinctions between deposits. It is hypothesized that the White Mountains have a similar glacial chronology to the adjacent Sierra Nevada, but that with the intensification of the Sierran rainshadow during the Quaternary, the extent of glaciation in the White Mountains apparently decreased through time owing to regional tectonic uplift. This had led to the preservation of a more complete sequence of glacial deposits than in the Sierra Nevada, making the delineation of multiple mid-Quaternary events possible in many valleys. Further radiometric and chronometric dating of these deposits is in progress. [Key words: Glaciation, Quaternary, glacial geomorphology, White Mountains, California, Nevada.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号