首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1222篇
  免费   133篇
  国内免费   464篇
测绘学   13篇
大气科学   33篇
地球物理   183篇
地质学   1185篇
海洋学   16篇
天文学   62篇
综合类   37篇
自然地理   290篇
  2024年   11篇
  2023年   25篇
  2022年   72篇
  2021年   89篇
  2020年   126篇
  2019年   114篇
  2018年   116篇
  2017年   97篇
  2016年   63篇
  2015年   76篇
  2014年   61篇
  2013年   144篇
  2012年   66篇
  2011年   52篇
  2010年   57篇
  2009年   68篇
  2008年   69篇
  2007年   71篇
  2006年   54篇
  2005年   43篇
  2004年   66篇
  2003年   50篇
  2002年   41篇
  2001年   21篇
  2000年   19篇
  1999年   15篇
  1998年   18篇
  1997年   18篇
  1996年   16篇
  1995年   14篇
  1994年   14篇
  1993年   16篇
  1992年   9篇
  1991年   5篇
  1990年   6篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1983年   2篇
  1954年   1篇
排序方式: 共有1819条查询结果,搜索用时 31 毫秒
91.
The wedge‐shaped Moornambool Metamorphic Complex is bounded by the Coongee Fault to the east and the Moyston Fault to the west. This complex was juxtaposed between stable Delamerian crust to the west and the eastward migrating deformation that occurred in the western Lachlan Fold Belt during the Ordovician and Silurian. The complex comprises Cambrian turbidites and mafic volcanics and is subdivided into a lower greenschist eastern zone and a higher grade amphibolite facies western zone, with sub‐greenschist rocks occurring on either side of the complex. The boundary between the two zones is defined by steeply dipping L‐S tectonites of the Mt Ararat ductile high‐strain zone. Deformation reflects marked structural thickening that produced garnet‐bearing amphibolites followed by exhumation via ductile shearing and brittle faulting. Pressure‐temperature estimates on garnet‐bearing amphibolites in the western zone suggest metamorphic pressures of ~0.7–0.8 GPa and temperatures of ~540–590°C. Metamorphic grade variations suggest that between 15 and 20 km of vertical offset occurs across the east‐dipping Moyston Fault. Bounding fault structures show evidence for early ductile deformation followed by later brittle deformation/reactivation. Ductile deformation within the complex is initially marked by early bedding‐parallel cleavages. Later deformation produced tight to isoclinal D2 folds and steeply dipping ductile high‐strain zones. The S2 foliation is the dominant fabric in the complex and is shallowly west‐dipping to flat‐lying in the western zone and steeply west‐dipping in the eastern zone. Peak metamorphism is pre‐ to syn‐D2. Later ductile deformation reoriented the S2 foliation, produced S3 crenulation cleavages across both zones and localised S4 fabrics. The transition to brittle deformation is defined by the development of east‐ and west‐dipping reverse faults that produce a neutral vergence and not the predominant east‐vergent transport observed throughout the rest of the western Lachlan Fold Belt. Later north‐dipping thrusts overprint these fault structures. The majority of fault transport along ductile and brittle structures occurred prior to the intrusion of the Early Devonian Ararat Granodiorite. Late west‐ and east‐dipping faults represent the final stages of major brittle deformation: these are post plutonism.  相似文献   
92.
Progressive Early Silurian low‐pressure greenschist to granulite facies regional metamorphism of Ordovician flysch at Cooma, southeastern Australia, had different effects on detrital zircon and monazite and their U–Pb isotopic systems. Monazite began to dissolve at lower amphibolite facies, virtually disappearing by upper amphibolite facies, above which it began to regrow, becoming most coarsely grained in migmatite leucosome and the anatectic Cooma Granodiorite. Detrital monazite U–Pb ages survived through mid‐amphibolite facies, but not to higher grade. Monazite in the migmatite and granodiorite records only metamorphism and granite genesis at 432.8 ± 3.5 Ma. Detrital zircon was unaffected by metamorphism until the inception of partial melting, when platelets of new zircon precipitated in preferred orientations on the surface of the grains. These amalgamated to wholly enclose the grains in new growth, characterised by the development of {211} crystal faces, in the migmatite and granodiorite. New growth, although maximum in the leucosome, was best dated in the granodiorite at 435.2 ± 6.3 Ma. The combined best estimate for the age of metamorphism and granite genesis is 433.4 ± 3.1 Ma. Detrital zircon U–Pb ages were preserved unmodified throughout metamorphism and magma genesis and indicate derivation of the Cooma Granodiorite from Lower Palaeozoic source rocks with the same protolith as the Ordovician sediments, not Precambrian basement. Cooling of the metamorphic complex was relatively slow (average ~12°C/106y from ~730 to ~170°C), more consistent with the unroofing of a regional thermal high than cooling of an igneous intrusion. The ages of detrital zircon and monazite from the Ordovician flysch (dominantly composite populations 600–500 Ma and 1.2–0.9 Ga old) indicate its derivation from a source remote from the Australian craton.  相似文献   
93.
Detrital volcanic and vein quartz, accompanied by felsic volcanic debris, occur as minor constituents in the Ordovician subduction‐related mafic volcanics of the Molong Volcanic Belt. In the western province of the Molong Volcanic Belt, detrital quartz is present in the three episodes of the mafic Volcanics. Volcanic quartz occurs in allochthonous limestone blocks in the Bendigonian Hensleigh Siltstone overlying the Mitchell Formation. The second volcanic episode (the Fairbridge Volcanics) commenced after a hiatus of approximately 20 million years and lasted around 10 million years from Darriwilian to Gisbornian time. Locally derived vein quartz, volcanic quartz and felsic detritus are concentrated at the bases of autochthonous Wahringa and Yuranigh Limestone Members of the volcanics and are extensive and abundant in basal beds of the regional Eastonian limestone body that transgressed over an eroded volcanic centre at Cargo. This early Eastonian debris, deposited early in an 8 million‐year volcanic hiatus preceding the final Ordovician Bolindian volcanism, establishes a pre‐Eastonian age for mineralisation at Cargo. It is inferred that the pauses in volcanism were preceded by magmatic fractionation, intrusion and hydrothermal activity and followed by erosion, subsidence and deposition of autochthonous limestones. Minor occurrences of vein and volcanic quartz are found in Bolindian volcanogenic sediments of the third volcanic phase. It is concluded that hydrothermal vein formation (and mineralisation by inference) was associated with pauses in volcanic activity throughout the Middle to early Late Ordovician over a wide area in the western province, culminating in the mineralisation at Cargo and Copper Hill near Molong. Volcanism in the eastern province of the Molong Volcanic Belt was continuous from at least Darriwilian to latest Ordovician time. Here, detrital hydrothermal vein quartz and volcanic quartz and felsic detritus are distributed through late Middle and early Late Ordovician turbidites of the Weemalla Formation. The possible existence of cycles in the source area like those of the Fairbridge Volcanics is masked by the distal nature of these deposits. Vein formation occurred in both provinces from late Middle Ordovician to early Late Ordovician, long before the formation of the world‐class mineral deposit at Cadia associated with the latest Ordovician Cadia Monzonite.  相似文献   
94.
滇西昌宁─孟连带南部地层地质问题   总被引:1,自引:1,他引:1  
滇西孟连以南,整合于南段组浊积岩之上的拉巴群硅质岩含晚二叠世早期放射虫化石,南段组时代不仅限于石炭纪,可能延入二叠纪。二者为晚古生代思茅地块的外陆坡沉积。其西面的南基河杂岩(新名)由层序混乱的晚古生代硅质岩、泥岩和少量砂岩、玄武岩构成。放射虫化石证据表明,硅质岩时代不仅限于晚泥盆世-早二叠世,还延入晚二叠世,而有的砂岩时代为早石炭世,它们是经过强烈构造变动的古特提斯洋的沉积记录。昌宁-孟连带向南可能延至泰国北部的清迈带,而非东北部的难河带。  相似文献   
95.
匡耀求 《湖南地质》1994,13(4):250-254,240
本文综述指出:深部过程,可能导致放射性元素在地幔或下地壳的某些部位聚结而产生强烈的核反应,致使下地壳加热和上地壳的快速抬升和伸展垮塌,产生地震、火山作用、岩浆作用,形成山脉。通过对来自地球内部的α─粒子辐射监测,有可能对毁灭性地震作出预报。  相似文献   
96.
Eighteen Albian and Cenomanian planktic Foraminiferida from the Pieniny Klippen Belt of Poland are discussed. A local biostratigraphic zonation (six zones) is proposed and certain problems of palaeoecology are reviewed. The lithostratigraphical element is the so-called Trawne Beds, a Cretaceous flysch in the Pieniny Klippen Belt.  相似文献   
97.
The Andes between 36°30′ and 37°S represent a Cretaceous fold and thrust belt strongly reactivated in the late Miocene. Most of the features that absorbed Neogene shortening were already uplifted in the late Cretaceous, as revealed by field mapping and confirmed by previous fission track analysis. This Andean section is formed by two sectors: a western-inner sector generated by the closure of the upper Oligocene-lower Miocene intra-arc Cura Mallín basin between the middle and late Miocene (Guañacos fold and thrust belt), and an eastern-outer sector, where late Triassic-early Jurassic extensional depocenters were exhumed in two discrete phases of contraction, in the latest early Cretaceous and late Miocene to the Present, respectively (Chos Malal fold and thrust belt). Late Miocene deformation has not homogeneously reactivated Cretaceous compressive structures, being minimal south of 37°30′S through the eastern-outer sector (southern continuation of the Chos Malal fold and thrust belt). The reason for such an inhomogeneous deformational evolution seems to be related to the development of a late Miocene shallow subduction regime between 34°30′ and 37°45′S, as it was proposed in previous studies. This shallow subduction zone is evidenced by the eastward expansion of the arc that was accompanied by the eastern displacement of the orogenic front at these latitudes. As a result, the Cretaceous fold and thrust belt were strongly reactivated north of 37°30′S producing the major topographic break along the Southern Central Andes.  相似文献   
98.
The extent of the deposition and of the preservation of the Blouberg Formation and Waterberg Group was at least partially controlled by brittle reactivation along the Palala Shear Zone. The Palala Shear Zone in the Blouberg area (Northern Province, South Africa) is characterised by granulite-grade gneiss, and formed by sinistral transpressional collision between the Southern Marginal Zone (Kaapvaal Craton) and the Central Zone of the Limpopo Belt. The Limpopo collision is thought to have occurred either at 2.0 Ga or at 2.7 Ga with reactivation at 2.0 Ga. Deposition of the Blouberg Formation was characterised by syn-sedimentary tectonism, which is reflected by a sudden upward coarsening in sedimentary rocks, and by the presence of a strongly folded and thrusted lower member. Bedding orientations and slickenside lineation orientations suggest that vergence was towards the south, and such a tectonism can be inferred to have produced a highland area to the north, bound on the southern margin by the southern strand of the Melinda Fault. The presence of an inferred northerly upland area is supported by palaeocurrent directions and the preservational extent of the Setlaole and Makgabeng Formations of the Waterberg Group (post-Blouberg Formation). The extent and stratigraphy of the overlying Mogalakwena Formation suggests that these strata onlapped northwards over the denuding highlands. Younger Sibasa basalts of the Soutpansberg Group have been dated at ca. 1.85 Ga. Blouberg and Waterberg strata can therefore be interpreted as syn- and post-tectonic sedimentary rocks, respectively, following a ca. 2.0 reactivation event along the Palala Shear Zone. It is difficult to reconcile the succession of geological events at Blouberg with a ca. 2.0 Ga Limpopo orogeny, and thus sedimentary strata in the study area support a 2.7 Ga date for Limpopo collision, with syn-Blouberg tectonism relating to ca. 2.0 reactivation within the previously assembled Limpopo Belt.  相似文献   
99.
Faced with an ever-increasing diversity of demand for the use of public lands, managers and planners are turning more often to a multiple-use approach to meet those demands. This approach requires the uses to be mutually compatible and to utilize the more valuable attributes or resource values of the land. Therefore, it is imperative that planners be provided with all available information on attribute and resource values in a timely fashion and in a format that facilitates a comparative evaluation.The Kootenai National Forest administration enlisted the U.S. Geological Survey and U.S. Bureau of Mines to perform a quantitative assessment of future copper/silver production potential within the forest from sediment-hosted copper deposits in the Revett Formation that are similar to those being mined at the Troy Mine near Spar Lake. The U.S. Geological Survey employed a quantitative assessment technique that compared the favorable host terrane in the Kootenai area with worldwide examples of known sediment-hosted copper deposits. The assessment produced probabilistic estimates of the number of undiscovered deposits that may be present in the area and of the copper and silver endowment that might be contained in them.Results of the assessment suggest that the copper/silver deposit potential is highest in the southwestern one-third of the forest. In this area there is an estimated 50 percent probability of at least 50 additional deposits occurring mostly within approximately 260,000 acres where the Revett Formation is thought to be present in the subsurface at depths of less than 1,500 meters. A Monte Carlo type simulation using data on the grade and tonnage characteristics of other known silver-rich, sediment-hosted copper deposits predicts a 50 percent probability that these undiscovered deposits will contain at least 19 million tonnes of copper and 100,000 tonnes of silver. Combined with endowments estimated for identified, but not thoroughly explored deposits, and deposits that might also occur in the remaining area of the forest, the endowment potential increases to 23 million tonnes of copper and 190,000 tonnes of silver.  相似文献   
100.
内蒙造山带南部古板块构造演化   总被引:4,自引:1,他引:4  
陈琦  邹新民 《地质论评》1993,39(6):478-483
对内蒙造山带南部构造岩石组合、构造序列和部分岩石的同位素年龄研究表明,华北板块北缘在中元古代由大陆裂谷发展成被动陆缘,晚元古代开始转为活动陆缘,延续至早古生代转为俯冲-左旋走滑。随着温都尔庙蛇绿岩的定位和俯冲带北移、贺根山蛇绿岩的定位,内蒙造山带南部分别经历了两次均衡抬升-裂陷。海西末期华北-西伯利亚两大板块已缝合,进入超碰撞阶段,区内花岗岩大量侵位并形成了一系列推覆构造。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号