首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1222篇
  免费   133篇
  国内免费   464篇
测绘学   13篇
大气科学   33篇
地球物理   183篇
地质学   1185篇
海洋学   16篇
天文学   62篇
综合类   37篇
自然地理   290篇
  2024年   11篇
  2023年   25篇
  2022年   72篇
  2021年   89篇
  2020年   126篇
  2019年   114篇
  2018年   116篇
  2017年   97篇
  2016年   63篇
  2015年   76篇
  2014年   61篇
  2013年   144篇
  2012年   66篇
  2011年   52篇
  2010年   57篇
  2009年   68篇
  2008年   69篇
  2007年   71篇
  2006年   54篇
  2005年   43篇
  2004年   66篇
  2003年   50篇
  2002年   41篇
  2001年   21篇
  2000年   19篇
  1999年   15篇
  1998年   18篇
  1997年   18篇
  1996年   16篇
  1995年   14篇
  1994年   14篇
  1993年   16篇
  1992年   9篇
  1991年   5篇
  1990年   6篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1983年   2篇
  1954年   1篇
排序方式: 共有1819条查询结果,搜索用时 815 毫秒
911.
The calcite mylonites in the Xar Moron-Changchun shear zone show a significance dextral shearing characteristics. The asymmetric(σ-structure) calcite/quartz grains or aggregates, asymmetry of calcite c-axes fabric diagrams and the oblique foliation of recrystallized calcite grains correspond to a top-to-E shearing. Mineral deformation behaviors, twin morphology, C-axis EBSD fabrics, and quartz grain size-frequency diagrams demonstrate that the ductile shear zone was developed under conditions of greenschist facies, with the range of deformation temperatures from 200 to 300°C. These subgrains of host grains and surrounding recrystallized grains, strong undulose extinction, and slightly curved grain boundaries are probably results of intracrystalline deformation and dynamic recrystallization implying that the deformation took place within the dislocation-creep regime at shallow crustal levels. The calculated paleo-strain rates are between 10~(–7.87)s~(–1) and 10~(–11.49)s~(–1) with differential stresses of 32.63–63.94 MPa lying at the higher bound of typical strain rates in shear zones at crustal levels, and may indicate a relatively rapid deformation. The S-L-calcite tectonites have undergone a component of uplift which led to subhorizontal lifting in an already non-coaxial compressional deformation regime with a bulk pure shear-dominated general shear. This E-W large-scale dextral strike-slip movement is a consequence of the eastward extrusion of the Xing'an-Mongolian Orogenic Belt, and results from far-field forces associated with Late Triassic convergence domains after the final closure of the Paleo-Asian Ocean.  相似文献   
912.
A great number of magmatic Cu-Ni deposits(including Kalatongke in Xinjiang and Hongqiling in Jilin) are distributed over a distance of almost 3000 km across the Tianshan-Xingmeng Orogenic Belt, from Tianshan Mountains in Xinjiang in the west, to Jilin in eastern China in the east. These deposits were formed during a range of magmatic episodes from the Devonian to the Triassic. Significant magmatic Cu-Ni-Co-PGE deposits were formed from the Devonian period in the Nalati arc(e.g. Jingbulake Cu-Ni in Xinjiang), Carboniferous period in the Puerjin-Ertai arc(e.g. Kalatongke Cu-Ni-Co-PGE in Xinjiang), Carboniferous period in the Dananhu-Touquan arc(e.g. Huangshandong, Xiangshan and Tulaergen in estern Tianshan, Xinjiang) to Triassic period in the Hulan arc(e.g. Hongqiling Cu-Ni in Jilin). In addition to the overall tectonic, geologic and distribution of magmatic Cu-Ni deposits in the Tianshan-Xingmeng Orogenic Belt, the metallogenic setting, deposit geology and mineralization characteristics of each deposit mentioned above are summarized in this paper. Geochronologic data of Cu-Ni deposits indicate that, from west to east, the metallogenic ages in the Tianshan-Xingmeng Orogenic Belt changed with time, namely, from the Late Caledonian(~440 Ma), through the Late Hercynian(300–265 Ma) to the Late Indosinian(225–200 Ma). Such variation could reflect a gradual scissor type closure of the paleo Asian ocean between the Siberia Craton and the North China Craton from west to east.  相似文献   
913.
The Laowangzhai gold deposit, located in the Ailaoshan gold belt (SW China), is hosted in various types of rocks, including in quartz porphyry, carbonaceous slate, meta‐sandstone, lamprophyre, and altered ultramafic rocks. In contrast to other wall rocks, the orebodies in altered ultramafic rocks are characterized by the occurrence of a large amount of Ni‐bearing minerals. The ore‐forming process of the orebodies hosted by altered ultramafic rocks can be divided into two stages: pyrite‐vaesite‐native gold and gersdorffite‐violarite stages. The contents of As and Sb increased during the evolution of ore‐forming fluid based on the mineral assemblages. Thermodynamic modeling of the Ni‐Cu‐As‐Fe‐S system using the SUPCRT92 software package with the updated database of slop16.dat indicates the fS2 in ore‐forming fluid decreases significantly from stage I to stage II. The decreases of fS2 due to crystallization of sulfides and fO2 due to fluid–rock reaction were responsible for ore formation in altered ultramafic rocks of the Laowangzhai gold deposit. Geological evidence, the in situ sulfur isotope values of pyrite, and the other published isotopic data suggest that the ore‐forming fluid for ultramafic rock ores was dominantly composed of evolved magmatic fluid with the important input of sediments.  相似文献   
914.
This study describes a previously unidentified Neoproterozoic mafic dyke emplaced in the northern flank of the Langshan Tectonic Belt. This dyke intruded into the micaquartz schist of the Zhaertaishan Group, and yielded an age of 908 ± 8 Ma. The youngest U-Pb ages of micaquartz schist from the Zhaertaishan Group in the Langshan area were 1118 ± 33 Ma,1187 ± 3 Ma and 1189 ± 39 Ma,suggesting that the depositional age of the protolith of the schist was between 908 ± 8 Ma and 1118 ± 33 Ma. In addition, 436 U-Pb age data and 155 Lu-Hf isotopic data from six samples in the Langshan Tectonic Belt and one Permian greywacke from the Wuhai area show distinct differences between the northern and southern flanks of the Main Langshan area. The U-Pb ages of the northern flank are primarily Meso-Neoproterozoic; similar ages have not been identified in the southern flank to date.Moreover, two-stage Hf model ages of the northern flank feature three age peaks at ~900 Ma,~1700 Ma and ~2600 Ma; this differs from Hf model ages of the southern flank, which feature one strong age peak at ~2700 Ma. These results suggest that the northern and southern flanks of the Main Langshan area have different geochronologic characteristics and should be divided further. Based on the U-Pb ages and Hf model ages, the northern and southern flanks of the Main Langshan area are named the North and South Langshan Tectonic Belts. Comparison of the U-Pb age and two-stage Hf model age distributions from the North Langshan Tectonic Belt, South Langshan Tectonic Belt, Alxa Block and the North China Craton(NCC) reveal that the North Langshan Tectonic Belt is similar to the Alxa Block and that the South Langshan Tectonic Belt is similar to the NCC. In addition, the zircon U-Pb age of 860 ±7 Ma commonly observed in the Alxa Block was detected in the Permian greywacke from the Wuhai area of the NCC, which suggests that the amalgamation of the North and South Langshan Tectonic belts(i.e.,the amalgamation of the Alxa Block and the NCC), occurred between Devonian and late Permian.  相似文献   
915.
全国油气资源战略选区调查工程进展与成果   总被引:5,自引:5,他引:0  
2016—2018年期间,由中国地质调查局油气资源调查中心牵头组织实施的“全国油气资源战略选区调查工程”,以实现“新区、新层系、新类型、新认识”四新领域油气调查战略发现和突破,推动创建油气勘查开发新格局为目标,按照总体部署、分步实施原则,组织开展了长江经济带页岩气调查、北方新区新层系和松辽盆地页岩油调查油气调查三大科技攻坚战。在基础地质调查基础上,评价优选了一批页岩油气有利目标区,部署实施了二维地震、参数井和压裂试气工程,实现了长江中游下古生界页岩气、松辽盆地白垩系青山口组页岩油、塔里木盆地温宿凸起新近系油气、准噶尔盆地南缘二叠系芦草沟组油气和侏罗系西山窑组煤层气以及银额盆地居延海坳陷石炭系—二叠系油气调查等一系列重大突破和发现,初步摸清了新区新层系资源潜力。这些成果大大提振了南方复杂构造区页岩气、陆相页岩油和北方新区新层系油气资源勘查的信心,推动了油气地质调查与科技创新的深度融合,形成了油气成藏理论机理新认识,发挥了公益性油气资源调查的引领和带动作用。  相似文献   
916.
The Sanshandao gold deposit, with total resources of more than 60 t of gold, is located in the Jiaodong gold province, the most important gold province of China. The deposit is a typical highly fractured and altered, disseminated gold system, with high-grade, quartz-sulphide vein/veinlet stockworks that cut Mesozoic granodiorite. There are four stages of veins that developed in the following sequence: (1) quartz-K-feldspar-sericite; (2) quartz-pyrite±arsenopyrite; (3) quartz-base metal sulfide; and (4) quartz-carbonate. Fluid inclusions in quartz and calcite in vein/veinlet stockworks contain C-O-H fluids of three main types. The first type consists of dilute CO2–H2O fluids coeval with the early vein stage. Molar volumes of these CO2–H2O fluid inclusions, ranging from 50–60 cm3/mol, yield estimated minimum trapping pressures of 3 kbar. Homogenization temperatures, obtained mainly from CO2–H2O inclusions with lower CO2 concentration, range from 267–375 °C. The second inclusion type, with a CO2–H2O±CH4 composition, was trapped during the main mineralizing stages. These fluids may reflect the CO2–H2O fluids that were modified by fluid/rock reactions with altered wallrocks. Isochores for CO2-H2O±CH4 inclusions, with homogenization temperatures ranging from 204–325 °C and molar volumes from 55 to 70 cm3/mol, provide an estimated minimum trapping pressure of 1.2 kbar. The third inclusion type, aqueous inclusions, trapped in cross-cutting microfractures in quartz and randomly in calcite, are post-mineralization, and have homogenization temperatures between 143–228 °C and salinities from 0.71–7.86 wt% NaCl equiv. Stable isotope data show that the metamorphic fluid contribution is minimal and that ore fluids are of magmatic origin, most likely sourced from 120–126 Ma mafic to intermediate dikes. This is consistent with the carbonic nature of the fluid, and the cross-cutting nature of those deposits relative to the host Mesozoic granitoid.Editorial handling: R.J. Goldfarb  相似文献   
917.
Abstract Illite crystallinity (IC) analyses in the Upper Cretaceous Shimanto accretionary complex of the southern Akaishi Mountains, eastern Southwest Japan confirm the applicability of this technique for evaluating the grade of diagenesis/metamorphism in a sediment-dominated accretionary complex. Reproducibility analyses of IC values show a variance of about 15% from the mean. Data from three traverses, which transect across-strike sections of ∼25 km, clearly demonstrate that the IC distributions have specific overall trends. The IC values belong to the lQwer anchizone and the zone of diagenesis. The IC distributions may be controlled locally by structural features, but there are no distinct relationships with regional-scale geological structures. This may indicate that the heterogeneous geothermal rise affected the pre-existing structural and diagenetic/metamorphic framework of the accretionary sequence. Along-strike variations of grade tend to increase toward the northeast where a Middle Miocene granitoid occurs. Hence, the original diagenetic/metamorphic framework of this part of the Shimanto Belt was presumably overprinted during the Middle Miocene.  相似文献   
918.
The volcanosedimentary units of Late Mesozoic-Tertiary age that outcrop in the Southeast Anatolian orogenic belt are commonly referred to as the Maden complex. There is a long-lasting controversy over its definition, age, stratigraphic and structural position, and the origin, and thus, the orogenic evolution. To solve this problem, large strips across the Southeast Anatolian orogenic belt have been studied extensively, and different rock groups which were regarded previously as the Maden unit have been differentiated. Their major characteristics and differences have been identified. The Maden unit sensu stricto is here redefined as a volcanosedimentary succession of Middle Eocene age representing a short-lived back-arc basin which reached the stage of an embryonic ocean. Presently, the Maden group occurs mainly within the lower nappe stack of the nappe zone of the Southeast Anatolian orogen. It rests stratigraphically on an amalgamated nappe package consisting of the different metamorphic tectonic units and, in turn, is overlain tectonically by the upper nappe units.  相似文献   
919.
The non-marine Cretaceous Kyongsang Supergroup, which is divided into the Sindong, the Hayang and the Yuchon groups, is widely distributed in southeastern Korea. Radiolarian-bearing pebbles are collected from the conglomerates of the Kumidong and the Kisadong formations of the Hayang Group. The age of radiolarian fossils range from Late Permian to Middle Jurassic. In Korea, Permian to Middle Jurassic marine chert beds are not exposed. The directions of paleocurrents of the Kumidong and the Kisadong formations are mainly from the northeast to southwest. During Cretaceous time, the Mino-Tamba Belt, within which Permian to Middle Jurassic chert beds are exposed, is suggested to have been located northeast of the Kyongsang Basin. The radiolarian faunas of the Hayang Group are similar to those of the Mino-Tamba Belt and other associated Mesozoic accretionary belts in Japan (e.g. the Ashio Belt). The provenance of the radiolarian-bearing pebbles collected from the Kumidong and the Kisadong formations is interpreted to be the Mino-Tamba Belt and other associated Mesozoic accretionary belts in Japan.  相似文献   
920.
The Neoproterozoic Adamastor-Brazilide Ocean was generated during the breakup of the Rodinia supercontinent, and remnants of its oceanic lithosphere have been found in the Brasiliano-Pan African orogenic system that includes the Araçuaí, West-Congo, Brasília, Ribeira, Kaoko, Dom Feliciano, Damara and Gariep belts. The Araçuaí and the West-Congo belts are counterparts of the same Neoproterozoic orogen. The first belt comprises two thirds of the Araçuaí-West-Congo Orogen. This orogen is rather unique owing to its confined nature within the embayment outlined by the São Francisco and Congo cratons. In spite of this, the presence of ophiolitic remnants, and a calc-alkaline magmatic arc, indicate that the basin/orogen evolution comprise both oceanic spreading and consumption. It is assumed that coeval Paramirim and Sangha aulacogens played a key role by making room for the Araçuaí-West-Congo Basin. Sedimentary successions record all major stages of a basin that evolved from continental rift, when glaciation-related sedimentation was very significant, to passive margin. Rifting started around 1.0–0.9 Ga. The oceanic stage is constrained by an ophiolitic remnant dated at 0.8 Ga. If the cratonic bridge that once linked the São Francisco and Congo palaeocontinental regions did not hinder the opening of an ocean basin, it certainly limited its width. As a consequence, only a narrow oceanic lithosphere was generated, and it was subducted afterwards. This is also suggested by orogenic calc-alkaline granitoids occuping a small area of the orogen. Geochronological data for pre-, syn- and late-collisional granitoids indicate that the orogenic stage lasted from 625 Ma to 570 Ma. A period of magmatic quiescence was followed by intrusion of postcollisional plutons at 535–500 Ma. The features of the Araçuaí-West-Congo Orogen suggest the development of a complete Wilson Cycle in a branch of the Adamastor Ocean, which can be interpreted as a gulf with limited generation of oceanic lithosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号