首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26911篇
  免费   4910篇
  国内免费   6789篇
测绘学   4721篇
大气科学   4846篇
地球物理   6937篇
地质学   11900篇
海洋学   3684篇
天文学   292篇
综合类   2121篇
自然地理   4109篇
  2024年   104篇
  2023年   295篇
  2022年   892篇
  2021年   1079篇
  2020年   1259篇
  2019年   1427篇
  2018年   1205篇
  2017年   1423篇
  2016年   1461篇
  2015年   1627篇
  2014年   1726篇
  2013年   2045篇
  2012年   1839篇
  2011年   1897篇
  2010年   1522篇
  2009年   1709篇
  2008年   1731篇
  2007年   1838篇
  2006年   1745篇
  2005年   1516篇
  2004年   1383篇
  2003年   1175篇
  2002年   1084篇
  2001年   908篇
  2000年   839篇
  1999年   769篇
  1998年   677篇
  1997年   630篇
  1996年   529篇
  1995年   485篇
  1994年   422篇
  1993年   361篇
  1992年   222篇
  1991年   204篇
  1990年   131篇
  1989年   101篇
  1988年   111篇
  1987年   64篇
  1986年   35篇
  1985年   32篇
  1984年   20篇
  1983年   5篇
  1982年   11篇
  1981年   9篇
  1980年   11篇
  1979年   11篇
  1978年   13篇
  1977年   5篇
  1976年   6篇
  1954年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The model proposed originally by Mannheim and Kazanas for fitting the shapes of galactic rotation curves has recently been considered by Grumiller to describe gravity of a central object at large distances. Herein we employ the same geometry within the context of nonlinear electrodynamics (NED). Pure electrical NED model is shown to generate the novel Rindler acceleration term in the metric which explains anomalous behaviors of test particles/satellites. Remarkably a pure magnetic model of NED yields flat rotation curves that may account for the missing dark matter. Weak and strong energy conditions are satisfied in such models of NED.  相似文献   
992.
This paper studies the chemo‐mechanics of cemented granular solids in the context of continuum thermodynamics for fluid‐saturated porous media. For this purpose, an existing constitutive model formulated in the frame of the Breakage Mechanics theory is augmented to cope with reactive processes. Chemical state variables accounting for the reactions between the solid constituents and the solutes in the pore fluid are introduced to enrich the interactions among the microstructural units simulated by the model (i.e., grains and cement bonds). Two different reactive processes are studied (i.e., grain dissolution and cement precipitation), using the chemical variables to describe the progression of the reactions and track changes in the size of grains and bonds. Finally, a homogenization strategy is used to derive the energy potentials of the solid mixture, adopting probability density functions that depend on both mechanical and chemical indices. It is shown that the connection between the statistics of the micro‐scale attributes and the continuum properties of the solid enables the mathematical capture of numerous mechanical effects of lithification and chemical deterioration, such as changes in stiffness, expansion/contraction of the elastic domain, and development of inelastic strains during reaction. In particular, the model offers an interpretation of the plastic strains generated by aggressive environments, which are here interpreted as an outcome of chemically driven debonding and comminution. As a result, the model explains widely observed macroscopic signatures of geomaterial degradation by reconciling the energetics of the deformation/reaction processes with the evolving geometry of the microstructural attributes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
993.
In this work, the possible exploitation of fiber-reinforced composites in the context of maritime transportation of compressed natural gas (CNG) is investigated. In addition to a more conventional steel configuration, two different fiber materials, carbon and glass, are considered as construction materials for pressure vessels (PVs) to be stored on board ships, with thickness optimized by FEM analysis.The considered scenario is represented by the transportation of CNG from an offshore well to a terminal on shore. Fleets of ships carrying CNG in pressure vessels manufactured with the investigated materials are generated by means of a ship synthesis model (SSM) software and compared on the basis of technical and economical indicators.The choice of the construction material influences considerably the weight of the PVs, which represent a major item of total ship weight and reflects directly on the general transport performances in terms of resistance, seakeeping and reliability in the service. On the other hand, capital as well as operating expenditures are considerably affected by the choice. When exploring the design space, the ship synthesis model is able, at a preliminary stage of the design, to account for the various technical and economical aspects, their implications and relationships. Results are presented of computations carried out in a specific case, identified by the annual gas production and other characteristics of the well terminal and a cruising route for the ships. The comparison is carried out on the basis of the cost per transported unit of gas and of the percentage of success in the transportation process. The computations show that the choice of the PV material has a key influence on the results in terms of optimal number, dimensions and speed of the ships.  相似文献   
994.
We collected soil‐hydraulic property data from the literature for wildfire‐affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field‐saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil‐structural changes, organic matter impacts, quantitative water repellency trends, and soil‐water content along with soil‐hydraulic properties could drive the development of better techniques for numerically simulating infiltration in burned areas.  相似文献   
995.
A new elastoplastic model called loading memory surface based on the critical state concept and the multi‐surface framework is proposed for geomaterials. The model uses a hypoelastic formulation and two plastic mechanisms. The formulations of the model are made in three‐dimensional stress–strain space and work under both monotonic and cyclic loadings. A newly introduced formalism makes it possible to obtain the cyclic response directly from the monotonic loading one. This formalism gives a three‐dimensional generalization of the well‐known Masing rule. The model has been validated against test results of Hostun sand under several conditions: monotonic and cyclic, drained and undrained, tests in compression and in extension, and at different confining pressures and different densities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
996.
Agricultural sediment and pesticide runoff is a widespread ecological and human health concern. Numerical simulation models, such as Root Zone Water Quality Model (RZWQM) and Pesticide Root Zone Model (PRZM), have been increasingly used to quantify off‐site agricultural pollutant movement. However, RZWQM has been criticized for its inability to simulate sedimentation processes. The recent incorporation of the sedimentation module of Groundwater Loading Effects of Agricultural Management Systems has enabled RZWQM to simulate sediment and sediment‐associated pesticides. This study compares the sediment and pesticide transport simulation performance of the newly released RZWQM and PRZM using runoff data from 2 alfalfa fields in Davis, California. A composite metric (based on coefficient of determination, Nash–Sutcliffe efficiency, index of agreement, and percent bias) was developed and employed to ensure robust, comprehensive assessment of model performance. Results showed that surface water runoff was predicted reasonably well (absolute percent bias <31%) by RZWQM and PRZM after adjusting important hydrologic parameters. Even after calibration, underestimation bias (?89% ≤ PBIAS  ≤ ?36%) for sediment yield was observed in both models. This might be attributed to PRZM's incorrect distribution of input water and uncertainty in RZWQM's runoff erosivity coefficient. Moreover, the underestimation of sediment might be less if the origin of measured sediment was considered. Chlorpyrifos losses were simulated with reasonable accuracy especially for Field A (absolute PBIAS  ≤ 22%), whereas diuron losses were underestimated to a great extent (?98% ≤ PBIAS  ≤ ?65%) in both models. This could be attributed to the underprediction of herbicide concentration in the top soil due to the limitations of the instantaneous equilibrium sorption model as well as the high runoff potential of herbicide formulated as water‐dispersible granules. RZWQM and PRZM partitioned pesticides into the water and sediment phases similarly. According to model predictions, the majority of pesticide loads were carried via the water phase. On the basis of this study, both RZWQM and PRZM performed well in predicting runoff that carried highly adsorptive pesticides on an event basis, although the more physically based RZWQM is recommended when field‐measured soil hydraulic properties are available.  相似文献   
997.
The dynamic response of a mechanically stabilized earth wall to the passing of a high‐speed train is modelled using the finite element method. A three‐dimensional analysis is carried out, using a specific framework that allows performing the analysis with a moderate computational effort. In the first place, a so‐called multiphase approach is used to take into account the reinforcing strips. The moving load is taken into account by performing the calculation in a mobile referential using the properties of symmetry of the train cars and a simplifying assumption of periodicity for the whole train. We also assume a steady state. A partial validation of the approach is obtained by means of a comparison with an analytical solution. The quick increase in displacements induced by the train passing when the speed comes close to the celerity of Rayleigh waves clearly appears in the results. The vertical displacements, vertical stresses in the backfill, tensile forces in the strips and the influence of the stiffness of the soil are discussed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
998.
A computational framework is presented for dynamic strain localization and deformation analyses of water‐saturated clay by using a cyclic elasto‐viscoplastic constitutive model. In the model, the nonlinear kinematic hardening rule and softening due to the structural degradation of soil particles are considered. In order to appropriately simulate the large deformation phenomenon in strain localization analysis, the dynamic finite element formulation for a two‐phase mixture is derived in the updated Lagrangian framework. The shear band development is shown through the distributions of viscoplastic shear strain, the axial strain, the mean effective stress, and the pore water pressure in a normally consolidated clay specimen. From the local stress–strain relations, more brittleness is found inside the shear bands than outside of them. The effects of partially drained conditions and mesh‐size dependency on the shear banding are also investigated. The effect of a partially drained boundary is found to be insignificant on the dynamic shear band propagation because of the rapid rate of applied loading and low permeability of the clay. Using the finer mesh results in slightly narrower shear bands; nonetheless, the results manifest convergency through the mesh refinement in terms of the overall shape of shear banding and stress–strain relations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
999.
The last decade has seen major technical and scientific improvements in the study of water transfer time through catchments. Nevertheless, it has been argued that most of these developments used conservative tracers that may disregard the oldest component of water transfer, which often has transit times greater than 5 years. Indeed, although the analytical reproducibility of tracers limits the detection of the older flow components associated with the most dampened seasonal fluctuations, this is very rarely taken into account in modelling applications. Tritium is the only environmental tracer at hand to investigate transfer times in the 5‐ to 50‐year range in surface waters, as dissolved gases are not suitable due to the degassing process. Water dating with tritium has often been difficult because of the complex history of its atmospheric concentration, but its current stabilization together with recent analytical improvements open promising perspectives. In this context, the innovative contribution of this study lies in the development of a generalized likelihood uncertainty estimation‐based approach for analysing the uncertainties associated with the modelling of transit time due to both parameter identification and tracer analytical precision issues. A coupled resampling procedure allows assessment of the statistical significance of the transfer time differences found in diverse waters. This approach was developed for tritium and the exponential‐piston model but can be implemented for virtually any tracer and model. Stream baseflow, spring and shallow aquifer waters from the Vallcebre research catchments, analysed for tritium in different years with different analytical precisions, were investigated by using this approach and taking into account other sources of uncertainty. The results showed three groups of waters of different mean transit times, with all the stream baseflow and spring waters older than the 5‐year threshold needing tritium. Low sensitivity of the results to the model structure was also demonstrated. Dual solutions were found for the waters sampled in 2013, but these results may be disambiguated when additional analyses will be made in a few years. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
1000.
Subsurface dams are rather effective and used for the prevention of saltwater intrusion in coastal regions around the world. We carried out the laboratory experiments to investigate the elevation of saltwater wedge after the construction of subsurface dams. The elevation of saltwater wedge refers to the upward movement of the downstream saltwater wedge because the subsurface dams obstruct the regional groundwater flow and reduce the freshwater discharge. Consequently, the saltwater wedge cannot further extend in the longitudinal direction but rises in the vertical profile resulting in significant downstream aquifer salinization. In order to quantitatively address this issue, field-scale numerical simulations were conducted to explore the influence of various dam heights, distances, and hydraulic gradients on the elevation of saltwater wedge. Our investigation shows that the upward movement of the saltwater wedge and its areal extension in the vertical domain of the downstream aquifer become more severe with a higher dam and performed a great dependence on the freshwater discharge. Furthermore, the increase of the hydraulic gradient and the dam distance from the sea boundary leads to a more pronounced wedge elevation. This phenomenon comes from the variation of the freshwater discharge due to the modification of dam height, location, and hydraulic gradient. Large freshwater discharge can generate greater repulsive force to restrain the elevation of saltwater wedge. These conclusions provide theoretical references for the behaviour of the freshwater–seawater interface after the construction of subsurface dams and help optimize the design strategy to better utilize the coastal groundwater resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号